On harmonic and biharmonic Bezier surfaces

被引:55
|
作者
Monterde, J
Ugail, H
机构
[1] Univ Valencia, Dept Geometria & Topol, E-46100 Valencia, Spain
[2] Univ Bradford, Sch Informat, Dept Elect Imaging & Media Commun, Bradford BD7 1DP, W Yorkshire, England
关键词
bilaplacian operator; biharmonic surfaces; PDE freeform surfaces;
D O I
10.1016/j.cagd.2004.07.003
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a new method of surface generation from prescribed boundaries based on the elliptic partial differential operators. In particular, we focus on the study of the so-called harmonic and biharmonic Bezier surfaces. The main result we report here is that any biharmonic Bezier surface is fully determined by the boundary control points. We compare the new method, by way of practical examples, with some related methods such as surfaces generation using discretisation masks and functional minimisations. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:697 / 715
页数:19
相关论文
共 50 条
  • [41] Harmonic Wavelets in Boundary Value Problems for Harmonic and Biharmonic Functions
    Subbotin, Yu. N.
    Chernykh, N. I.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2011, 273 : S142 - S159
  • [42] Harmonic wavelets in boundary value problems for harmonic and biharmonic functions
    Subbotin, Y. N.
    Chernykh, N. I.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2010, 16 (04): : 281 - 296
  • [43] Harmonic rational Bezier curves, p-Bezier curves and trigonometric polynomials
    Sanchez-Reyes, J
    COMPUTER AIDED GEOMETRIC DESIGN, 1998, 15 (09) : 909 - 923
  • [44] Harmonic wavelets in boundary value problems for harmonic and biharmonic functions
    Yu. N. Subbotin
    N. I. Chernykh
    Proceedings of the Steklov Institute of Mathematics, 2011, 273 : 142 - 159
  • [45] BEST APPROXIMATIONS OF SYMMETRICAL SURFACES BY BIQUADRATIC BEZIER SURFACES
    EISELE, EF
    COMPUTER AIDED GEOMETRIC DESIGN, 1994, 11 (03) : 331 - 343
  • [46] C-Bezier curves and surfaces
    Zhang, JW
    GRAPHICAL MODELS AND IMAGE PROCESSING, 1999, 61 (01): : 2 - 15
  • [47] Triangular Bezier surfaces of minimal area
    Arnal, A
    Lluch, A
    Monterde, J
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCA 2003, PT 3, PROCEEDINGS, 2003, 2669 : 366 - 375
  • [48] Are rational Bezier surfaces monotonicity preserving?
    Delgado, J.
    Pena, J. M.
    COMPUTER AIDED GEOMETRIC DESIGN, 2007, 24 (05) : 303 - 306
  • [49] GC(1) multisided Bezier surfaces
    Ye, X
    Nowacki, H
    Patrikalakis, NM
    ENGINEERING WITH COMPUTERS, 1997, 13 (04) : 222 - 234
  • [50] Bezier Surfaces for Modeling Inclusions in PIES
    Boltuc, Agnieszka
    Zieniuk, Eugeniusz
    Szerszen, Krzysztof
    Kuzelewski, Andrzej
    COMPUTATIONAL SCIENCE - ICCS 2020, PT II, 2020, 12138 : 170 - 183