On harmonic and biharmonic Bezier surfaces

被引:55
|
作者
Monterde, J
Ugail, H
机构
[1] Univ Valencia, Dept Geometria & Topol, E-46100 Valencia, Spain
[2] Univ Bradford, Sch Informat, Dept Elect Imaging & Media Commun, Bradford BD7 1DP, W Yorkshire, England
关键词
bilaplacian operator; biharmonic surfaces; PDE freeform surfaces;
D O I
10.1016/j.cagd.2004.07.003
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a new method of surface generation from prescribed boundaries based on the elliptic partial differential operators. In particular, we focus on the study of the so-called harmonic and biharmonic Bezier surfaces. The main result we report here is that any biharmonic Bezier surface is fully determined by the boundary control points. We compare the new method, by way of practical examples, with some related methods such as surfaces generation using discretisation masks and functional minimisations. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:697 / 715
页数:19
相关论文
共 50 条
  • [21] Mean value bezier surfaces
    Langer, Torsten
    Seidel, Hans-Peter
    MATHEMATICS OF SURFACES XII, PROCEEDINGS, 2007, 4647 : 263 - +
  • [22] SYNTHESIS OF BEZIER SURFACES ON THE GPU
    Concheiro, R.
    Amor, M.
    Boo, M.
    GRAPP 2010: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER GRAPHICS THEORY AND APPLICATIONS, 2010, : 110 - 115
  • [23] Bezier surfaces with prescribed diagonals
    Arnal, A.
    Monterde, J.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 424
  • [24] FAST SUBDIVISION OF BEZIER SURFACES
    HARRAND, VJ
    ZIEBARTH, JP
    CHOUDRY, A
    SIMULATION, 1990, 54 (05) : 241 - 244
  • [25] Generalized subdivision of Bezier surfaces
    Hu, SM
    Wang, GZ
    Jin, TG
    GRAPHICAL MODELS AND IMAGE PROCESSING, 1996, 58 (03): : 218 - 222
  • [26] A MULTISIDED GENERALIZATION OF BEZIER SURFACES
    LOOP, CT
    DEROSE, TD
    ACM TRANSACTIONS ON GRAPHICS, 1989, 8 (03): : 204 - 234
  • [27] Standardization of rational Bezier surfaces
    Yang, Yijun
    Yong, Junhai
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2007, 19 (02): : 245 - 250
  • [28] Rational Bezier form of hodographs of rational Bezier curves and surfaces
    Kim, DS
    Jang, T
    Shin, H
    Park, JY
    COMPUTER-AIDED DESIGN, 2001, 33 (04) : 321 - 330
  • [29] Bezier surfaces of minimal area
    Cosín, C
    Monterde, J
    COMPUTATIONAL SCIENCE-ICCS 2002, PT II, PROCEEDINGS, 2002, 2330 : 72 - 81
  • [30] Optimal parameterizations of Bezier surfaces
    Yang, Yi-Jun
    Yong, Jun-Hai
    Zhang, Hui
    Paul, Jean-Claude
    Sun, Jiaguang
    Advances in Visual Computing, Pt 1, 2006, 4291 : 672 - 681