On harmonic and biharmonic Bezier surfaces

被引:55
|
作者
Monterde, J
Ugail, H
机构
[1] Univ Valencia, Dept Geometria & Topol, E-46100 Valencia, Spain
[2] Univ Bradford, Sch Informat, Dept Elect Imaging & Media Commun, Bradford BD7 1DP, W Yorkshire, England
关键词
bilaplacian operator; biharmonic surfaces; PDE freeform surfaces;
D O I
10.1016/j.cagd.2004.07.003
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a new method of surface generation from prescribed boundaries based on the elliptic partial differential operators. In particular, we focus on the study of the so-called harmonic and biharmonic Bezier surfaces. The main result we report here is that any biharmonic Bezier surface is fully determined by the boundary control points. We compare the new method, by way of practical examples, with some related methods such as surfaces generation using discretisation masks and functional minimisations. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:697 / 715
页数:19
相关论文
共 50 条
  • [1] PDE triangular Bezier surfaces: Harmonic, biharmonic and isotropic surfaces
    Arnal, A.
    Lluch, A.
    Monterde, J.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (05) : 1098 - 1113
  • [2] Harmonic and biharmonic maps from surfaces
    Baird, P.
    Loubeau, E.
    Oniciuc, C.
    HARMONIC MAPS AND DIFFERENTIAL GEOMETRY, 2011, 542 : 223 - 230
  • [3] QUASI-HARMONIC CONSTRAINTS FOR TORIC BEZIER SURFACES
    Ahmad, Daud
    Naeem, Saba
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2018, 36 (02): : 325 - 340
  • [4] Design for rational B́zier harmonic and biharmonic surfaces
    Shi Y.
    Wang G.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2010, 22 (08): : 1331 - 1338
  • [5] Tensor product Bezier surfaces on triangle Bezier surfaces
    Lasser, D
    COMPUTER AIDED GEOMETRIC DESIGN, 2002, 19 (08) : 625 - 643
  • [6] Approximating rational triangular Bezier surfaces by polynomial triangular Bezier surfaces
    Xu, Hui-Xia
    Wang, Guo-Jin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 228 (01) : 287 - 295
  • [7] Bezier developable surfaces
    Fernandez-Jambrina, L.
    COMPUTER AIDED GEOMETRIC DESIGN, 2017, 55 : 15 - 28
  • [8] Bezier type surfaces
    Piscoran Laurian, Ioan
    Pop, Ovidiu T.
    Dan, Barbosu
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (02): : 483 - 489
  • [9] Quasi-harmonic Bezier approximation of minimal surfaces for finding forms of structural membranes
    Xu, Gang
    Rabczuk, Timon
    Guler, Erhan
    Wu, Qing
    Hui, Kin-chuen
    Wang, Guozhao
    COMPUTERS & STRUCTURES, 2015, 161 : 55 - 63
  • [10] HARMONIC AND BIHARMONIC MAPS AT IASI
    Balmus, A.
    Fetcu, D.
    Oniciuc, C.
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2010, 56 (01): : 81 - 96