Optimal Concavity of the Torsion Function

被引:9
|
作者
Henrot, Antoine [1 ]
Nitsch, Carlo [2 ]
Salani, Paolo [3 ]
Trombetti, Cristina [2 ]
机构
[1] Univ Lorraine, CNRS, UMR7502, Inst Elie Cartan Lorraine, Nancy, France
[2] Univ Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Naples, Italy
[3] Univ Firenze, Dipartimento Matemat & Informat U Dini, Florence, Italy
关键词
Torsion function; Optimal concavity; Ellipsoids; BOUNDARY-VALUE-PROBLEMS; SYMMETRY; SERRINS;
D O I
10.1007/s10957-018-1302-9
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
It is well known that the torsion function of a convex domain has a square root which is concave. The power one half is optimal in the sense that no greater power ensures concavity for every convex set. In this paper, we investigate concavity, not of a power of the torsion function itself, but of the complement to its maximum. Requiring that the torsion function enjoys such a property for the power one half leads to an unconventional overdetermined problem. Our main result is to show that solutions of this problem exist, if and only if they are quadratic polynomials, finding, in fact, a new characterization of ellipsoids.
引用
收藏
页码:26 / 35
页数:10
相关论文
共 50 条
  • [21] Log-concavity of the overpartition function
    Engel, Benjamin
    [J]. RAMANUJAN JOURNAL, 2017, 43 (02): : 229 - 241
  • [22] Log-concavity of the overpartition function
    Benjamin Engel
    [J]. The Ramanujan Journal, 2017, 43 : 229 - 241
  • [23] Log-concavity of the partition function
    Stephen DeSalvo
    Igor Pak
    [J]. The Ramanujan Journal, 2015, 38 : 61 - 73
  • [24] Remarks on concavity of the auxiliary function appearing in quantum reliability function
    Yanagi, K
    Furuichi, S
    Kuriyama, K
    [J]. 2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 2003, : 456 - 456
  • [25] A CHARACTERIZATION OF BALLS THROUGH OPTIMAL CONCAVITY FOR POTENTIAL FUNCTIONS
    Salani, Paolo
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (01) : 173 - 183
  • [26] A FORMAL PROOF OF THE CONCAVITY OF THE PRODUCTION POSSIBILITY FUNCTION
    BLACK, J
    [J]. ECONOMIC JOURNAL, 1957, 67 (265): : 133 - 135
  • [27] CONCAVITY OF THE ERROR FUNCTION WITH RESPECT TO HOLDER MEANS
    Chu, Yuming
    Zhao, Tiehong
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (02): : 589 - 595
  • [28] CONCAVITY PROPERTIES OF KREINS SPECTRAL SHIFT FUNCTION
    GEISLER, R
    KOSTRYKIN, V
    SCHRADER, R
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 1995, 7 (02) : 161 - 181
  • [29] A new test of convexity–concavity of discount function
    Pavlo R. Blavatskyy
    Hela Maafi
    [J]. Theory and Decision, 2020, 89 : 121 - 136
  • [30] A note on the concavity of the happiness function in family support
    Bruna, Fernando
    Rungo, Paolo
    [J]. ECONOMICS BULLETIN, 2020, 40 (02): : 1122 - 1131