Linear Sized Types in the Calculus of Constructions

被引:0
|
作者
Sacchini, Jorge Luis [1 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
关键词
TERMINATION; DEFINITIONS;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Sized types provide an expressive and compositional framework for proving termination and productivity of (co-) recursive definitions. In this paper, we study sized types with linear annotations of the form n . alpha + m with n and m natural numbers. Concretely, we present a type system with linear sized types for the Calculus of Constructions extended with one inductive type (natural numbers) and one coinductive type (streams). We show that this system satisfies desirable metatheoretical properties, including strong normalization, and give a sound and complete size-inference algorithm.
引用
收藏
页码:169 / 185
页数:17
相关论文
共 50 条
  • [42] Towards Normalization by Evaluation for the βη-Calculus of Constructions
    Abel, Andreas
    FUNCTIONAL AND LOGIC PROGRAMMING, PROCEEDINGS, 2010, 6009 : 224 - 239
  • [43] Lambda Calculus With Types
    Rezus, Adrian
    STUDIA LOGICA, 2015, 103 (06) : 1319 - 1326
  • [44] Types for the ambient calculus
    Cardelli, L
    Ghelli, G
    Gordon, AD
    INFORMATION AND COMPUTATION, 2002, 177 (02) : 160 - 194
  • [45] Infinite λ-calculus and types
    Berarducci, A
    Dezani-Ciancaglini, M
    THEORETICAL COMPUTER SCIENCE, 1999, 212 (1-2) : 29 - 75
  • [46] INTERSECTION TYPES FOR THE λμ-CALCULUS
    van Bakel, Steffen
    Barbanera, Franco
    de'Liguoro, Ugo
    LOGICAL METHODS IN COMPUTER SCIENCE, 2018, 14 (01)
  • [47] On the role of type decorations in the calculus of inductive constructions
    Barras, B
    Grégoire, B
    COMPUTER SCIENCE LOGIC, PROCEEDINGS, 2005, 3634 : 151 - 166
  • [48] On basis constructions in finite element exterior calculus
    Licht, Martin W.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2022, 48 (02)
  • [49] Coercive subtyping for the calculus of constructions (extended abstract)
    Chen, G
    ACM SIGPLAN NOTICES, 2003, 38 (01) : 150 - 159
  • [50] A New Elimination Rule for the Calculus of Inductive Constructions
    Barras, Bruno
    Corbineau, Pierre
    Gregoire, Benjamin
    Herbelin, Hugo
    Sacchini, Jorge Luis
    TYPES FOR PROOFS AND PROGRAMS, 2009, 5497 : 32 - +