Quadratic Forms, Galois Cohomology and Function Fields of p-adic Curves

被引:0
|
作者
Suresh, V. [1 ]
机构
[1] Univ Hyderabad, Dept Math & Stat, Hyderabad 500046, Andhra Pradesh, India
关键词
Quadratic forms; Galois cohomology; u-invariant; p-adic curves; FINITE-FIELD; ALGEBRAS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be a p-adic field and K a function field of a curve over k. It was proved in ([PS3]) that if p not equal 2, then the u-invariant of K is 8. Let l be a prime number not equal to p. Suppose that K contains a primitive l(th) root of unity. It was also proved that every element in H-3(K,Z/lZ) is a symbol ([PS3]) and that every element in H-2(K,Z/lZ) is a sum of two symbols ([Su]). In this article we discuss these results and explain how the Galois cohomology methods used in the proof lead to consequences beyond the u-invariant computation.
引用
收藏
页码:189 / 199
页数:11
相关论文
共 50 条
  • [21] Probabilistic Galois theory over p-adic fields
    Weiss, Benjamin L.
    JOURNAL OF NUMBER THEORY, 2013, 133 (05) : 1537 - 1563
  • [22] ON GALOIS p-ADIC FIELDS OF p-POWER DEGREE
    Awtrey, Chad
    Komlofske, Peter
    Reese, Christian
    Williams, Janae
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2019, 41 (02): : 275 - 287
  • [23] Galois equivariant functions on Galois orbits in large p-adic fields
    Alexandru, Victor
    Vajaitu, Marian
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2024, 151 : 63 - 75
  • [24] p-adic Cohomology
    Kedlaya, Kiran S.
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS: ALGEBRAIC GEOMETRY SEATTLE 2005, VOL 80, PTS 1 AND 2, 2009, 80 : 667 - 684
  • [25] GALOIS THEORY FOR INERTIAL AUTOMORPHISMS OF P-ADIC FIELDS
    HEEREMA, N
    DEVENEY, JK
    JOURNAL OF ALGEBRA, 1975, 36 (03) : 339 - 347
  • [26] SOME P-ADIC GALOIS REPRESENTATIONS FOR CURVES IN CHARACTERISTIC-P
    VALENTINI, RC
    MATHEMATISCHE ZEITSCHRIFT, 1986, 192 (04) : 541 - 545
  • [27] Isotropy of quadratic forms over function fields ofp-adic curves
    R. Parimala
    V. Suresh
    Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 1998, 88 (1): : 129 - 150
  • [28] The Researches about Isogenies between Elliptic Curves, Quadratic Forms and p-adic Lattices
    Luo, Lixia
    ACM COMMUNICATIONS IN COMPUTER ALGEBRA, 2021, 55 (03): : 120 - 121
  • [29] Ouintic forms over p-adic fields
    Leep, DB
    Yeomans, CC
    JOURNAL OF NUMBER THEORY, 1996, 57 (02) : 231 - 241
  • [30] p-adic quotient sets II: Quadratic forms
    Donnay, Christopher
    Garcia, Stephan Ramon
    Rouse, Jeremy
    JOURNAL OF NUMBER THEORY, 2019, 201 : 23 - 39