Probabilistic Galois theory over p-adic fields

被引:6
|
作者
Weiss, Benjamin L. [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词
p-Adic polynomials; Galois groups; Splitting fields;
D O I
10.1016/j.jnt.2012.09.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We estimate several probability distributions arising from the study of random, monic polynomials of degree n with coefficients in the integers of a general p-adic field K-p having residue field with q = p(f) elements. We estimate the distribution of the degrees of irreducible factors of the polynomials, with tight error bounds valid when q > n(2) + n. We also estimate the distribution of Galois groups of such polynomials, showing that for fixed n, almost all Galois groups are cyclic in the limit q -> infinity. In particular, we show that the Galois groups are cyclic with probability at least 1 - 1/q. We obtain exact formulas in the case of K-p for all p > n when n = 2 and n = 3. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1537 / 1563
页数:27
相关论文
共 50 条
  • [1] Isometric Galois actions over p-adic fields
    Alexandru, V.
    Vajaitu, M.
    Zaharescu, A.
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2016, 59 (04): : 295 - 301
  • [2] GALOIS THEORY FOR INERTIAL AUTOMORPHISMS OF P-ADIC FIELDS
    HEEREMA, N
    DEVENEY, JK
    JOURNAL OF ALGEBRA, 1975, 36 (03) : 339 - 347
  • [3] Partitions associated with Galois maps over p-adic fields
    Zaharescu, A
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2005, 11 (02): : 181 - 189
  • [4] On Galois cohomology of p-adic fields.
    Herr, L
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1998, 126 (04): : 563 - 600
  • [5] ON GALOIS p-ADIC FIELDS OF p-POWER DEGREE
    Awtrey, Chad
    Komlofske, Peter
    Reese, Christian
    Williams, Janae
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2019, 41 (02): : 275 - 287
  • [6] Galois equivariant functions on Galois orbits in large p-adic fields
    Alexandru, Victor
    Vajaitu, Marian
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2024, 151 : 63 - 75
  • [7] ON FORMS OVER P-ADIC FIELDS
    BROWKIN, J
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1966, 14 (09): : 489 - &
  • [8] Syntomic cohomology and p-adic regulators for varieties over p-adic fields
    Nekovar, Jan
    Niziol, Wieslawa
    Berger, Laurent
    Deglise, Frederic
    ALGEBRA & NUMBER THEORY, 2016, 10 (08) : 1695 - 1790
  • [9] Artin conjecture for p-adic Galois representations of function fields
    Liu, Ruochuan
    Wan, Daqing
    MATHEMATICAL RESEARCH LETTERS, 2018, 25 (01) : 143 - 157
  • [10] Class field theory for open curves over p-adic fields
    Toshiro Hiranouchi
    Mathematische Zeitschrift, 2010, 266 : 107 - 113