On Galois cohomology of p-adic fields.

被引:54
|
作者
Herr, L [1 ]
机构
[1] Univ Bordeaux 1, Lab Math Pures, F-33405 Talence, France
来源
关键词
D O I
10.24033/bsmf.2337
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work follows J.-M. Fontaine's paper in the Grothendieck Festschrift, where he constructs an equivalence between the category of Z(P)-adic representations of the absolute Galois group G(K), of a local field K of mixed characteristic (0, p > 0) and a category uf modules over a certain ring, endowed with two operators satisfying special properties. We give here an explicit construction of the cohomology groups of a Z(P)-adic representation of G(K) killed by a power of p, using these new objects. When K is a finite extension of Q(P), we show then how one can find again Tate's classical results about these groups : the finiteness and the calculation of the Euler-Poincare characteristic. The methods used seem to be lather simpler than the standard cohomological arguments because we dont need sophisticated theories like local class field theory and everything is essentially explicit. One gets also interesting information about the structure of the modules associated with representations and a 3-step filtration on their Galois cohomology.
引用
收藏
页码:563 / 600
页数:38
相关论文
共 50 条
  • [1] Galois cohomology of p-adic representations
    [J]. EULER SYSTEMS, 2000, (147): : 9 - 31
  • [2] Quadratic Forms, Galois Cohomology and Function Fields of p-adic Curves
    Suresh, V.
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL II: INVITED LECTURES, 2010, : 189 - 199
  • [3] Bounding the symbol length in the Galois cohomology of function fields of p-adic curves
    Suresh, Venapally
    [J]. COMMENTARII MATHEMATICI HELVETICI, 2010, 85 (02) : 337 - 346
  • [4] Syntomic cohomology and p-adic regulators for varieties over p-adic fields
    Nekovar, Jan
    Niziol, Wieslawa
    Berger, Laurent
    Deglise, Frederic
    [J]. ALGEBRA & NUMBER THEORY, 2016, 10 (08) : 1695 - 1790
  • [5] ON THE GALOIS STRUCTURE OF ARITHMETIC COHOMOLOGY I: COMPACTLY SUPPORTED p-ADIC COHOMOLOGY
    Burns, David
    [J]. NAGOYA MATHEMATICAL JOURNAL, 2020, 239 : 294 - 321
  • [6] On the cohomology of semi-stable p-adic Galois representations
    Ouyang, Yi
    Yang, Jinbang
    [J]. COMPTES RENDUS MATHEMATIQUE, 2014, 352 (7-8) : 557 - 561
  • [7] Isometric Galois actions over p-adic fields
    Alexandru, V.
    Vajaitu, M.
    Zaharescu, A.
    [J]. BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2016, 59 (04): : 295 - 301
  • [8] Probabilistic Galois theory over p-adic fields
    Weiss, Benjamin L.
    [J]. JOURNAL OF NUMBER THEORY, 2013, 133 (05) : 1537 - 1563
  • [9] ON GALOIS p-ADIC FIELDS OF p-POWER DEGREE
    Awtrey, Chad
    Komlofske, Peter
    Reese, Christian
    Williams, Janae
    [J]. JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2019, 41 (02): : 275 - 287
  • [10] Galois equivariant functions on Galois orbits in large p-adic fields
    Alexandru, Victor
    Vajaitu, Marian
    [J]. RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2024, 151 : 63 - 75