Thermomechanical Nanostraining of Two-Dimensional Materials

被引:40
|
作者
Liu, Xia [1 ]
Sachan, Amit Kumar [2 ]
Howell, Samuel Tobias [1 ]
Conde-Rubio, Ana [1 ]
Knoll, Armin W. [3 ]
Boero, Giovanni [1 ]
Zenobi, Renato [2 ]
Brugger, Jurgen [1 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, Microsyst Lab, CH-1015 Lausanne, Switzerland
[2] Swiss Fed Inst Technol, Dept Chem & Appl Biosci, CH-8093 Zurich, Switzerland
[3] IBM Res Zurich, CH-8803 Ruschlikon, Switzerland
基金
欧洲研究理事会;
关键词
2D materials; strain nanopattern; molybdenum disulfide; local bandgap; thermal scanning probe lithography; tip-enhanced Raman spectroscopy;
D O I
10.1021/acs.nanolett.0c03358
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Local bandgap tuning in two-dimensional (2D) materials is of significant importance for electronic and optoelectronic devices but achieving controllable and reproducible strain engineering at the nanoscale remains a challenge. Here, we report on thermomechanical nanoindentation with a scanning probe to create strain nanopatterns in 2D transition metal dichalcogenides and graphene, enabling arbitrary patterns with a modulated bandgap at a spatial resolution down to 20 nm. The 2D material is in contact via van der Waals interactions with a thin polymer layer underneath that deforms due to the heat and indentation force from the heated probe. Specifically, we demonstrate that the local bandgap of molybdenum disulfide (MoS2) is spatially modulated up to 10% and is tunable up to 180 meV in magnitude at a linear rate of about -70 meV per percent of strain. The technique provides a versatile tool for investigating the localized strain engineering of 2D materials with nanometer-scale resolution.
引用
收藏
页码:8250 / 8257
页数:8
相关论文
共 50 条
  • [41] Two-dimensional materials stack up
    Thomas, Stuart
    NATURE ELECTRONICS, 2022, 5 (05) : 256 - 256
  • [42] Phonon Polaritonics in Two-Dimensional Materials
    Rivera, Nicholas
    Christensen, Thomas
    Narang, Prineha
    NANO LETTERS, 2019, 19 (04) : 2653 - 2660
  • [43] Electronic Transport in Two-Dimensional Materials
    Sangwan, Vinod K.
    Hersam, Mark C.
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 69, 2018, 69 : 299 - 325
  • [44] Two-Dimensional Materials for Versatile Biosensing
    不详
    CHEMICAL ENGINEERING PROGRESS, 2020, 116 (11) : 13 - 13
  • [45] Special issue on two-dimensional materials
    William Vandenberghe
    Vihar Georgiev
    Journal of Computational Electronics, 2021, 20 : 1 - 1
  • [46] Two-dimensional materials for electronic applications
    Max C. Lemme
    Lain-Jong Li
    Tomás Palacios
    Frank Schwierz
    MRS Bulletin, 2014, 39 : 711 - 718
  • [47] Chiral phonons in two-dimensional materials
    Chen, Hao
    Zhang, Wei
    Niu, Qian
    Zhang, Lifa
    2D MATERIALS, 2019, 6 (01)
  • [48] Defect engineering in two-dimensional materials
    Jie Jiang
    Zhenhua Ni
    Journal of Semiconductors, 2019, (07) : 17 - 18
  • [49] Catalysis with two-dimensional materials and their heterostructures
    Deng, Dehui
    Novoselov, K. S.
    Fu, Qiang
    Zheng, Nanfeng
    Tian, Zhongqun
    Bao, Xinhe
    NATURE NANOTECHNOLOGY, 2016, 11 (03) : 218 - 230
  • [50] Two-dimensional nonlayered materials for electrocatalysis
    Wang, Yizhan
    Zhang, Ziyi
    Mao, Yanchao
    Wang, Xudong
    ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (11) : 3993 - 4016