Thermomechanical Nanostraining of Two-Dimensional Materials

被引:40
|
作者
Liu, Xia [1 ]
Sachan, Amit Kumar [2 ]
Howell, Samuel Tobias [1 ]
Conde-Rubio, Ana [1 ]
Knoll, Armin W. [3 ]
Boero, Giovanni [1 ]
Zenobi, Renato [2 ]
Brugger, Jurgen [1 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, Microsyst Lab, CH-1015 Lausanne, Switzerland
[2] Swiss Fed Inst Technol, Dept Chem & Appl Biosci, CH-8093 Zurich, Switzerland
[3] IBM Res Zurich, CH-8803 Ruschlikon, Switzerland
基金
欧洲研究理事会;
关键词
2D materials; strain nanopattern; molybdenum disulfide; local bandgap; thermal scanning probe lithography; tip-enhanced Raman spectroscopy;
D O I
10.1021/acs.nanolett.0c03358
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Local bandgap tuning in two-dimensional (2D) materials is of significant importance for electronic and optoelectronic devices but achieving controllable and reproducible strain engineering at the nanoscale remains a challenge. Here, we report on thermomechanical nanoindentation with a scanning probe to create strain nanopatterns in 2D transition metal dichalcogenides and graphene, enabling arbitrary patterns with a modulated bandgap at a spatial resolution down to 20 nm. The 2D material is in contact via van der Waals interactions with a thin polymer layer underneath that deforms due to the heat and indentation force from the heated probe. Specifically, we demonstrate that the local bandgap of molybdenum disulfide (MoS2) is spatially modulated up to 10% and is tunable up to 180 meV in magnitude at a linear rate of about -70 meV per percent of strain. The technique provides a versatile tool for investigating the localized strain engineering of 2D materials with nanometer-scale resolution.
引用
收藏
页码:8250 / 8257
页数:8
相关论文
共 50 条
  • [31] Two-dimensional mesoporous sensing materials
    Wen, Yu
    Wei, Facai
    Zhang, Wenqian
    Cui, Anyang
    Cui, Jing
    Jing, Chengbin
    Hu, Zhigao
    Hu, Qingguo
    Fu, Jianwei
    Liu, Shaohua
    Cheng, Jiangong
    CHINESE CHEMICAL LETTERS, 2020, 31 (02) : 521 - 524
  • [32] Recent Progress on Two-Dimensional Materials
    Chang, Cheng
    Chen, Wei
    Chen, Ye
    Chen, Yonghua
    Chen, Yu
    Ding, Feng
    Fan, Chunhai
    Fan, Hong Jin
    Fan, Zhanxi
    Gong, Cheng
    Gong, Yongji
    He, Qiyuan
    Hong, Xun
    Hu, Sheng
    Hu, Weida
    Huang, Wei
    Huang, Yuan
    Ji, Wei
    Li, Dehui
    Li, Lain-Jong
    Li, Qiang
    Lin, Li
    Ling, Chongyi
    Liu, Minghua
    Liu, Nan
    Liu, Zhuang
    Loh, Kian Ping
    Ma, Jianmin
    Miao, Feng
    Peng, Hailin
    Shao, Mingfei
    Song, Li
    Su, Shao
    Sun, Shuo
    Tan, Chaoliang
    Tang, Zhiyong
    Wang, Dingsheng
    Wang, Huan
    Wang, Jinlan
    Wang, Xin
    Wang, Xinran
    Wee, Andrew T. S.
    Wei, Zhongming
    Wu, Yuen
    Wu, Zhong-Shuai
    Xiong, Jie
    Xiong, Qihua
    Xu, Weigao
    Yin, Peng
    Zeng, Haibo
    ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (12)
  • [33] From two-dimensional materials to heterostructures
    Niu, Tianchao
    Li, Ang
    PROGRESS IN SURFACE SCIENCE, 2015, 90 (01) : 21 - 45
  • [35] The shapes of synthesized two-dimensional materials
    Kong, Xiao
    Fu, Chengrui
    Gladkikh, Vladislav
    Ding, Feng
    SMARTMAT, 2023, 4 (03):
  • [36] Thermal properties of two-dimensional materials
    Zhang, Gang
    Zhang, Yong-Wei
    CHINESE PHYSICS B, 2017, 26 (03)
  • [37] Two-dimensional Materials in Curved Geometry
    Minkyu Park
    S. H. Rhim
    Journal of the Korean Physical Society, 2020, 77 : 997 - 1001
  • [38] Two-dimensional materials cool down
    Stuart Thomas
    Nature Electronics, 2023, 6 : 552 - 552
  • [39] Exciton migration in two-dimensional materials
    Malakhov, Mikhail
    Cistaro, Giovanni
    Martin, Fernando
    Picon, Antonio
    COMMUNICATIONS PHYSICS, 2024, 7 (01):
  • [40] Two-dimensional nonlayered materials for electrocatalysis
    Wang, Yizhan
    Zhang, Ziyi
    Mao, Yanchao
    Wang, Xudong
    Energy and Environmental Science, 2020, 13 (11): : 3993 - 4016