The inertia tensor of a magic cube

被引:6
|
作者
Rogers, A [1 ]
Loly, P [1 ]
机构
[1] Univ Manitoba, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada
关键词
D O I
10.1119/1.1701845
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Magic cubes are shown to have maximally symmetric inertia tensors if they are interpreted as rigid body mass distributions. This symmetry is due to their semi-magic property where each row, column, and pillar has the same mass sum. The moment of inertia depends only on this property and the number of point masses in each row, column, and pillar. Because magic cubes do not possess detailed cubic symmetry, other scenarios that result in maximally symmetric inertia tensors are discussed. (C) 2004 American Association of Physics Teachers.
引用
收藏
页码:786 / 789
页数:4
相关论文
共 50 条
  • [41] Fast Calculation of Cube and Inverse Cube Roots Using a Magic Constant and Its Implementation on Microcontrollers
    Moroz, Leonid
    Samotyy, Volodymyr
    Walczyk, Cezary J.
    Cieslinski, Jan L.
    ENERGIES, 2021, 14 (04)
  • [42] A note on dependence of the inertia tensor on the strain measures
    Elena Ivanova
    Elena Vilchevskaya
    Continuum Mechanics and Thermodynamics, 2023, 35 : 141 - 158
  • [43] Bra-Ket Representation of the Inertia Tensor
    U.-Rae Kim
    Dohyun Kim
    Jungil Lee
    Journal of the Korean Physical Society, 2020, 77 : 945 - 951
  • [44] Attitude Control of the Spacecraft with Unknown Inertia Tensor
    Surov, Maksim O.
    Pyrkin, Anton A.
    Bobtsov, Alexey A.
    2012 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS (CCA), 2012, : 820 - 824
  • [45] EIGENVALUES OF THE INERTIA TENSOR AND EXTEROCEPTION BY THE MUSCULAR SENSE
    FITZPATRICK, P
    CARELLO, C
    TURVEY, MT
    NEUROSCIENCE, 1994, 60 (02) : 551 - 568
  • [46] TENSOR OF INERTIA OF THE COLLECTIVE HAMILTONIAN FOR A DINUCLEAR SYSTEM
    ADAMIAN, GG
    ANTONENKO, NV
    JOLOS, RV
    PHYSICS OF ATOMIC NUCLEI, 1995, 58 (03) : 360 - 367
  • [47] A DEVICE FOR MEASURING THE INERTIA TENSOR OF A RIGID BODY
    BUYANOV, EV
    MEASUREMENT TECHNIQUES USSR, 1991, 34 (06): : 585 - 589
  • [48] Revisited: the inertia tensor as a proprioceptive invariant in humans
    Craig, CM
    Bourdin, C
    NEUROSCIENCE LETTERS, 2002, 317 (02) : 106 - 110
  • [49] Low uncertainty method for inertia tensor identification
    Barreto, J. P.
    Munoz, L. E.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2016, 68-69 : 207 - 216
  • [50] Bra-Ket Representation of the Inertia Tensor
    Kim, U. -Rae
    Kim, Dohyun
    Lee, Jungil
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2020, 77 (11) : 945 - 951