The inertia tensor of a magic cube

被引:6
|
作者
Rogers, A [1 ]
Loly, P [1 ]
机构
[1] Univ Manitoba, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada
关键词
D O I
10.1119/1.1701845
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Magic cubes are shown to have maximally symmetric inertia tensors if they are interpreted as rigid body mass distributions. This symmetry is due to their semi-magic property where each row, column, and pillar has the same mass sum. The moment of inertia depends only on this property and the number of point masses in each row, column, and pillar. Because magic cubes do not possess detailed cubic symmetry, other scenarios that result in maximally symmetric inertia tensors are discussed. (C) 2004 American Association of Physics Teachers.
引用
收藏
页码:786 / 789
页数:4
相关论文
共 50 条
  • [21] CHANGES IN TRACE OF EARTHS INERTIA TENSOR
    ROCHESTER, MG
    SMYLIE, DE
    JOURNAL OF GEOPHYSICAL RESEARCH, 1974, 79 (32): : 4948 - 4951
  • [22] Calculation of the inertia tensor for symmetric fission
    Kao Neng Wu Li Yu Ho Wu Li/High Energy Physics and Nuclear Physics, 1997, 21 (01): : 58 - 61
  • [23] Methods for Estimating Spacecraft Inertia Tensor
    Chang, Hao-Chi
    Wu, Yeong-wei Andy
    Lin, Chen-Tsung
    Chiang, Wen-Lung
    2015 IEEE AEROSPACE CONFERENCE, 2015,
  • [24] Reaching and standing via the inertia tensor
    Isableu, B
    Bernardin, D
    Fourcade, P
    Bardy, B
    INTERNATIONAL JOURNAL OF PSYCHOLOGY, 2004, 39 (5-6) : 523 - 523
  • [25] Inertia tensor and size of a polymer chain
    Journal of Physics A: Mathematical and General, 30 (11):
  • [26] Three-body inertia tensor
    Ee, June-Haak
    Jung, Dong-Won
    Kim, U-Rae
    Kim, Dohyun
    Lee, Jungil
    EUROPEAN JOURNAL OF PHYSICS, 2021, 42 (05)
  • [27] THE CLASSICAL LIMIT OF THE QUANTAL INERTIA TENSOR
    LATHOUWERS, L
    CHEMICAL PHYSICS LETTERS, 1987, 138 (05) : 447 - 449
  • [28] INERTIA TENSOR AND DEVIATION MOMENTS OF AIRPLANTES
    MEWES, E
    ROSENAU, G
    ZEITSCHRIFT FUR FLUGWISSENSCHAFTEN, 1971, 19 (02): : 81 - &
  • [29] DYNAMIC INERTIA TENSOR AT HIGH SPINS
    GOODMAN, AL
    PHYSICAL REVIEW C, 1992, 45 (04): : 1649 - 1653
  • [30] Inertia tensor and size of a polymer chain
    Molisana, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (11): : 3867 - 3882