The inertia tensor of a magic cube

被引:6
|
作者
Rogers, A [1 ]
Loly, P [1 ]
机构
[1] Univ Manitoba, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada
关键词
D O I
10.1119/1.1701845
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Magic cubes are shown to have maximally symmetric inertia tensors if they are interpreted as rigid body mass distributions. This symmetry is due to their semi-magic property where each row, column, and pillar has the same mass sum. The moment of inertia depends only on this property and the number of point masses in each row, column, and pillar. Because magic cubes do not possess detailed cubic symmetry, other scenarios that result in maximally symmetric inertia tensors are discussed. (C) 2004 American Association of Physics Teachers.
引用
收藏
页码:786 / 789
页数:4
相关论文
共 50 条
  • [1] Magic Cube
    高金鵔
    阅读, 2015, (10) : 43 - 43
  • [2] The magic cube
    Der Zauberwürfel
    Lötterle, Thomas (thomas.loetterle@daimler.com), 1600, Vincentz Verlag (127): : 50 - 55
  • [3] Magic Cube Constructions
    Ibrahim, Amal A.
    Salman, Shatha A.
    Al-Aabdeen, Viean A. Zain
    Abduldaim, Areej M.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 20 (01): : 321 - 332
  • [4] March Madness Magic: Constructing a Tournament with a Magic Cube
    Freyberg, Bryan J.
    AMERICAN MATHEMATICAL MONTHLY, 2021, 128 (08): : 719 - 725
  • [5] The electric multipole expansion for a magic cube
    Rogers, A
    Loly, P
    EUROPEAN JOURNAL OF PHYSICS, 2005, 26 (05) : 809 - 813
  • [6] THE MAGIC CUBE + RUBIK,ERNO INVENTION
    PETO, GP
    VARGA, T
    NEW HUNGARIAN QUARTERLY, 1981, 22 (83): : 167 - 170
  • [7] CUBE-MAGIC LABELINGS OF GRIDS
    Kalinowski, Thomas
    Ryan, Joe
    Wijaya, Rachel Wulan Nirmalasari
    ARS COMBINATORIA, 2020, 151 : 247 - 256
  • [9] EULERIAN MAGIC CUBE OF ORDER 10
    ARKIN, J
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (06): : A728 - &
  • [10] The role of the inertia tensor in kinesthesis
    Pagano, CC
    CRITICAL REVIEWS IN BIOMEDICAL ENGINEERING, 2000, 28 (1-2) : 231 - 236