PolSAR Marine Aquaculture Detection Based on Nonlocal Stacked Sparse Autoencoder

被引:0
|
作者
Fan, Jianchao [1 ]
Liu, Xiaoxin [2 ]
Hu, Yuanyuan [3 ]
Han, Min [3 ]
机构
[1] Natl Marine Environm Monitoring Ctr, Dept Ocean Remote Sensing, Dalian 116023, Liaoning, Peoples R China
[2] Washington Univ, Comp Sci & Engn, St Louis, MO 63130 USA
[3] Dalian Univ Technol, Fac Elect Informat & Elect Engn, Dalian 116024, Liaoning, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Polarimetric SAR; Remote sensing images; Nonlocal spatial information; Stacked sparse autoencoder; Classification; IMAGE CLASSIFICATION;
D O I
10.1007/978-3-030-22808-8_46
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Marine aquaculture plays an important role in marine economic, which distributes widely around the coast. Using satellite remote sensing monitoring, it can achieve large scale dynamic monitoring. As a classic model of deep learning, stacked sparse autoencoder (SSAE) has the advantages of simple model and self-learning of features. Nonlocal spatial information is utilized to assist SSAE construct NSSAE to improve the precision in this paper. Experimental results demonstrate the superiority of nonlocal SSAE methods on marine target recognition.
引用
收藏
页码:469 / 476
页数:8
相关论文
共 50 条
  • [41] SARS-CoV-2 virus classification based on stacked sparse autoencoder
    Coutinho, Maria G. F.
    Camara, Gabriel B. M.
    Barbosa, Raquel de M.
    Fernandes, Marcelo A. C.
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 : 284 - 298
  • [42] Image fusion based on shift invariant shearlet transform and stacked sparse autoencoder
    Wang, Peng-Fei
    Luo, Xiao-Qing
    Li, Xin-Yi
    Zhang, Zhan-Cheng
    JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2018, 12 (02) : 73 - 84
  • [43] An Automatic Feature Learning and Fault Diagnosis Method Based on Stacked Sparse Autoencoder
    Qi, Yumei
    Shen, Changqing
    Liu, Jie
    Li, Xuwei
    Li, Dading
    Zhu, Zhongkui
    ADVANCED MANUFACTURING AND AUTOMATION VII, 2018, 451 : 367 - 375
  • [44] Deep Learning Based Stacked Sparse Autoencoder for PAPR Reduction in OFDM Systems
    Jayamathi, A.
    Jayasankar, T.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 31 (01): : 311 - 324
  • [45] An Algorithm Enhancing Line Spectrum in Frequency Domain Based on Stacked Sparse Autoencoder
    Yao, Tianyi
    Yan, Chenhong
    Yu, Yang
    Tu, Jiawei
    Pan, Guang
    17TH ACM INTERNATIONAL CONFERENCE ON UNDERWATER NETWORKS & SYSTEMS, WUWNET 2023, 2024,
  • [46] Classification of Epileptic EEG Signals with Stacked Sparse Autoencoder Based on Deep Learning
    Lin, Qin
    Ye, Shu-qun
    Huang, Xiu-mei
    Li, Si-you
    Zhang, Mei-zhen
    Xue, Yun
    Chen, Wen-Sheng
    INTELLIGENT COMPUTING METHODOLOGIES, ICIC 2016, PT III, 2016, 9773 : 802 - 810
  • [47] GRU-based stacked sparse autoencoder with attention mechanism for process monitoring
    Miao, Zengdi
    Wu, Ping
    Wu, Zhenquan
    Jia, Xiangjun
    Xu, Hui
    Jiang, Jian
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2025,
  • [48] Marine Floating Raft Aquaculture Detection of GF-3 PolSAR Images Based on Collective Multikernel Fuzzy Clustering
    Fan, Jianchao
    Zhao, Jianhua
    An, Wentao
    Hu, Yuanyuan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (08) : 2741 - 2754
  • [49] Classification of Thyroid Nodules with Stacked Denoising Sparse Autoencoder
    Li, Zexin
    Yang, Kaiji
    Zhang, Lili
    Wei, Chiju
    Yang, Peixuan
    Xu, Wencan
    INTERNATIONAL JOURNAL OF ENDOCRINOLOGY, 2020, 2020
  • [50] Marine Aquaculture Targets Automatic Recognition Based on GF-3 PolSAR Imagery
    Fan, Jianchao
    Zhao, Jianhua
    Han, Min
    Wang, Xinxin
    Li, Bingnan
    ADVANCES IN NEURAL NETWORKS - ISNN 2018, 2018, 10878 : 451 - 458