PolSAR Marine Aquaculture Detection Based on Nonlocal Stacked Sparse Autoencoder

被引:0
|
作者
Fan, Jianchao [1 ]
Liu, Xiaoxin [2 ]
Hu, Yuanyuan [3 ]
Han, Min [3 ]
机构
[1] Natl Marine Environm Monitoring Ctr, Dept Ocean Remote Sensing, Dalian 116023, Liaoning, Peoples R China
[2] Washington Univ, Comp Sci & Engn, St Louis, MO 63130 USA
[3] Dalian Univ Technol, Fac Elect Informat & Elect Engn, Dalian 116024, Liaoning, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Polarimetric SAR; Remote sensing images; Nonlocal spatial information; Stacked sparse autoencoder; Classification; IMAGE CLASSIFICATION;
D O I
10.1007/978-3-030-22808-8_46
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Marine aquaculture plays an important role in marine economic, which distributes widely around the coast. Using satellite remote sensing monitoring, it can achieve large scale dynamic monitoring. As a classic model of deep learning, stacked sparse autoencoder (SSAE) has the advantages of simple model and self-learning of features. Nonlocal spatial information is utilized to assist SSAE construct NSSAE to improve the precision in this paper. Experimental results demonstrate the superiority of nonlocal SSAE methods on marine target recognition.
引用
收藏
页码:469 / 476
页数:8
相关论文
共 50 条
  • [31] Multiobjective evolutionary algorithm assisted stacked autoencoder for PolSAR image classification
    Liu, Guangyuan
    Li, Yangyang
    Jiao, Licheng
    Chen, Yanqiao
    Shang, Ronghua
    SWARM AND EVOLUTIONARY COMPUTATION, 2021, 60 (60)
  • [32] Fault Diagnosis Based on Batch-normalized Stacked Sparse Autoencoder
    Liu Xiaozhi
    Gao Yang
    Yang Yinghua
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 4141 - 4146
  • [33] Deep Neural Network Hardware Implementation Based on Stacked Sparse Autoencoder
    Coutinho, Maria G. F.
    Torquato, Matheus F.
    Fernandes, Marcelo A. C.
    IEEE ACCESS, 2019, 7 : 40674 - 40694
  • [34] Radar HRRP target recognition based on stacked denosing sparse autoencoder
    Tai, Guangxing
    Wang, Yanhua
    Li, Yang
    Hong, Wei
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (21): : 7945 - 7949
  • [35] Pavement crack detection based on sparse autoencoder
    School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing
    Jiangsu
    210094, China
    Beijing Ligong Daxue Xuebao, 8 (800-804 and 809):
  • [36] An intelligent grinding burn detection system based on two-stage feature selection and stacked sparse autoencoder
    Weicheng Guo
    Beizhi Li
    Shouguo Shen
    Qinzhi Zhou
    The International Journal of Advanced Manufacturing Technology, 2019, 103 : 2837 - 2847
  • [37] An intelligent grinding burn detection system based on two-stage feature selection and stacked sparse autoencoder
    Guo, Weicheng
    Li, Beizhi
    Shen, Shouguo
    Zhou, Qinzhi
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2019, 103 (5-8): : 2837 - 2847
  • [38] Discriminative Feature Learning With Distance Constrained Stacked Sparse Autoencoder for Hyperspectral Target Detection
    Shi, Yanzi
    Lei, Jie
    Yin, Yaping
    Cao, Kailang
    Li, Yunsong
    Chang, Chein-, I
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (09) : 1462 - 1466
  • [39] Effective Feature Extraction via Stacked Sparse Autoencoder to Improve Intrusion Detection System
    Yan, Binghao
    Han, Guodong
    IEEE ACCESS, 2018, 6 : 41238 - 41248
  • [40] Hyperspectral anomaly detection combining sparse constraint and feature extraction via stacked autoencoder
    Song S.
    Yang Y.
    Wang H.
    Wang X.
    Rong S.
    Zhou H.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2023, 52 (06): : 932 - 943