Accelerating silicon photonic parameter extraction using artificial neural networks

被引:8
|
作者
Hammond, Alec M. [1 ]
Potokar, Easton [1 ]
Camacho, Ryan M. [1 ]
机构
[1] Brigham Young Univ, Elect & Comp Engn Dept, Provo, UT 84604 USA
来源
OSA CONTINUUM | 2019年 / 2卷 / 06期
基金
加拿大自然科学与工程研究理事会;
关键词
BRAGG GRATINGS; FABRICATION;
D O I
10.1364/OSAC.2.001964
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a novel silicon photonic parameter extraction tool that uses artificial neural networks. While other parameter extraction methods are restricted to relatively simple devices whose responses are easily modeled by analytic transfer functions, this method is capable of extracting parameters for any device with a discrete number of design parameters. To validate the method, we design and fabricate integrated chirped Bragg gratings. We then estimate the actual device parameters by iteratively fitting the simultaneously measured group delay and reflection profiles to the artificial neural network output. The method is fast, accurate, and capable of modeling the complicated chirping and index contrast. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:1964 / 1973
页数:10
相关论文
共 50 条
  • [1] Parameter extraction in thin film transistors using artificial neural networks
    Roberto C. Valdés
    Farid García
    Rodolfo Z. García
    Asdrúbal López
    Norberto Hernández
    [J]. Journal of Materials Science: Materials in Electronics, 2023, 34
  • [2] Parameter extraction in thin film transistors using artificial neural networks
    Valdes, Roberto C.
    Garcia, Farid
    Garcia, Rodolfo Z.
    Lopez, Asdrubal
    Hernandez, Norberto
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (06)
  • [3] Towards silicon photonic neural networks for artificial intelligence
    Bowen Bai
    Haowen Shu
    Xingjun Wang
    Weiwen Zou
    [J]. Science China Information Sciences, 2020, 63
  • [4] Towards silicon photonic neural networks for artificial intelligence
    Bai, Bowen
    Shu, Haowen
    Wang, Xingjun
    Zou, Weiwen
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2020, 63 (06)
  • [5] Towards silicon photonic neural networks for artificial intelligence
    Bowen BAI
    Haowen SHU
    Xingjun WANG
    Weiwen ZOU
    [J]. Science China(Information Sciences), 2020, 63 (06) : 105 - 118
  • [6] A New Approach for Semiconductor Parameter Extraction Using Cathodoluminescence and Artificial Neural Networks
    Soualmia, S.
    Bouldjedri, A.
    Benhaya, A.
    [J]. SCANNING, 2011, 33 (04) : 252 - 265
  • [7] Silicon photonic secure communication using artificial neural network
    Wang, Yan
    Cheng, Wei
    Feng, Junbo
    Zang, Shengyin
    Cheng, Hao
    Peng, Zheng
    Ren, Xiaodong
    Shuai, Yubei
    Liu, Hao
    Pu, Xun
    Yang, Junbo
    Wu, Jiagui
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 163
  • [8] Analog Fault Identification in RF Circuits using Artificial Neural Networks and Constrained Parameter Extraction
    Viveros-Wacher, Andres
    Rayas-Sanchez, Jose E.
    [J]. 2018 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION (NEMO), 2018,
  • [9] Hurst Parameter Estimation Using Artificial Neural Networks
    Ledesma-Orozco, S.
    Ruiz-Pinales, J.
    Garcia-Hernandez, G.
    Cerda-Villafana, G.
    Hernandez-Fusilier, D.
    [J]. JOURNAL OF APPLIED RESEARCH AND TECHNOLOGY, 2011, 9 (02) : 227 - 241
  • [10] Parameter Extraction of Silicon Photonic Devices Using Optical Coherence Tomography
    Shalaby, Rabab A.
    Sabry, Yasser M.
    Khalil, Diaa
    [J]. INTEGRATED PHOTONICS PLATFORMS: FUNDAMENTAL RESEARCH, MANUFACTURING AND APPLICATIONS, 2020, 11364