A New Approach for Semiconductor Parameter Extraction Using Cathodoluminescence and Artificial Neural Networks

被引:0
|
作者
Soualmia, S. [1 ]
Bouldjedri, A. [2 ]
Benhaya, A. [3 ]
机构
[1] Batna Univ, Fac Sci, Dept Phys, Batna, Algeria
[2] Batna Univ, Phys Radiat & Their Interact Matter Lab PRIMALAB, Dept Phys, Batna, Algeria
[3] Batna Univ, Lab Phys Chem Studies Mat LEPCM, Dept Elect, Batna, Algeria
关键词
absorption coefficient; cathodoluminescence; diffusion length; dead layer thickness; neural networks; parameter extraction; relative quantum efficiency; SCANNING-ELECTRON-MICROSCOPE; LOCALIZED DEFECTS; MODEL; TRANSISTOR; SIMULATION; DIFFUSION; ALGORITHM;
D O I
10.1002/sca.20232
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
In this paper, a new parameter extraction technique that jointly extracts four semiconductor-related parameters from theoretical/experimental cathodoluminescence data collected as a function of electron-beam energy is presented. The extraction technique is based on feed-forward artificial neural networks (ANN) where the ANN is trained to learn the inherent relationship between the input parameters (absorption coefficient alpha, diffusion length L, dead layer thickness Zt, and relative quantum efficiency Q) and the output parameter (CL intensity versus electron beam energy). After the training of the ANN, it is possible to observe the reverse process and extract the four parameters from any CL curve using an exhaustive search method. One of the main advantages of the proposed method is that the optimum set of values for the four parameters (alpha, L, Zt, Q) are obtained because the exhaustive search is performed in the search space spanned by all four parameters. Computational results on an n-type GaAs free defect semiconductor sample show that a unique set of parameter values with errors less than 5.5% from the nominal values can be obtained for each set of the experimental data points using the proposed algorithm. SCANNING 33: 252-265, 2011. (C) 2011 Wiley Periodicals, Inc.
引用
收藏
页码:252 / 265
页数:14
相关论文
共 50 条
  • [1] Semiconductor parameter extraction using cathodoluminescence and genetic algorithms
    Soualmia, S.
    Bouldjedri, A.
    Benhaya, A.
    [J]. MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2011, 14 (01) : 62 - 68
  • [2] Parameter extraction in thin film transistors using artificial neural networks
    Roberto C. Valdés
    Farid García
    Rodolfo Z. García
    Asdrúbal López
    Norberto Hernández
    [J]. Journal of Materials Science: Materials in Electronics, 2023, 34
  • [3] Parameter extraction in thin film transistors using artificial neural networks
    Valdes, Roberto C.
    Garcia, Farid
    Garcia, Rodolfo Z.
    Lopez, Asdrubal
    Hernandez, Norberto
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (06)
  • [4] Accelerating silicon photonic parameter extraction using artificial neural networks
    Hammond, Alec M.
    Potokar, Easton
    Camacho, Ryan M.
    [J]. OSA CONTINUUM, 2019, 2 (06): : 1964 - 1973
  • [5] A diagnosis approach for parameter deviations in linear system using artificial neural networks
    Manikandan, V.
    Devarajan, N.
    Ramakrishnan, K.
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS 1-6, 2006, : 915 - +
  • [6] A new approach to artificial neural networks
    Baptista, BD
    Cabral, ELL
    Soares, AJ
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1998, 9 (06): : 1167 - 1179
  • [7] Analog Fault Identification in RF Circuits using Artificial Neural Networks and Constrained Parameter Extraction
    Viveros-Wacher, Andres
    Rayas-Sanchez, Jose E.
    [J]. 2018 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION (NEMO), 2018,
  • [8] Hurst Parameter Estimation Using Artificial Neural Networks
    Ledesma-Orozco, S.
    Ruiz-Pinales, J.
    Garcia-Hernandez, G.
    Cerda-Villafana, G.
    Hernandez-Fusilier, D.
    [J]. JOURNAL OF APPLIED RESEARCH AND TECHNOLOGY, 2011, 9 (02) : 227 - 241
  • [9] Parameter extraction with neural networks
    Cazzanti, L
    Khan, M
    Cerrina, F
    [J]. METROLOGY, INSPECTION, AND PROCESS CONTROL FOR MICROLITHOGRAPHY XII, 1998, 3332 : 654 - 664
  • [10] A New Approach to Evaluation of the Material Cutting Using the Artificial Neural Networks
    Pitel, Jan
    Matiskova, Darina
    Marasova, Daniela
    [J]. TEM JOURNAL-TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS, 2019, 8 (02): : 325 - 332