Multi-Agent Deep Reinforcement Learning for HVAC Control in Commercial Buildings

被引:158
|
作者
Yu, Liang [1 ,2 ,3 ]
Sun, Yi [4 ]
Xu, Zhanbo [3 ]
Shen, Chao [3 ]
Yue, Dong [2 ,5 ]
Jiang, Tao [6 ]
Guan, Xiaohong [3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Automat, Nanjing 210003, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Artificial Intelligence, Nanjing 210003, Peoples R China
[3] Xi An Jiao Tong Univ, Key Lab Intelligent Networks & Network Secur, Minist Educ, Xian 710049, Peoples R China
[4] Nanjing Univ Posts & Telecommun, Coll Internet Things, Nanjing 210003, Peoples R China
[5] Nanjing Univ Posts & Telecommun, Coll Automat, Inst Adv Technol, Nanjing 210003, Peoples R China
[6] Huazhong Univ Sci & Technol, Sch Elect Informat & Commun, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Buildings; Air quality; Atmospheric modeling; Temperature; Heuristic algorithms; Machine learning; Fans; Commercial buildings; HVAC systems; energy cost; multi-zone coordination; random occupancy; thermal comfort; indoor air quality comfort; multi-agent deep reinforcement learning; DEMAND RESPONSE; ENERGY; SYSTEMS; SMART; MODEL; OPTIMIZATION; PRICE;
D O I
10.1109/TSG.2020.3011739
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In commercial buildings, about 40%-50% of the total electricity consumption is attributed to Heating, Ventilation, and Air Conditioning (HVAC) systems, which places an economic burden on building operators. In this paper, we intend to minimize the energy cost of an HVAC system in a multi-zone commercial building with the consideration of random zone occupancy, thermal comfort, and indoor air quality comfort. Due to the existence of unknown thermal dynamics models, parameter uncertainties (e.g., outdoor temperature, electricity price, and number of occupants), spatially and temporally coupled constraints associated with indoor temperature and CO2 concentration, a large discrete solution space, and a non-convex and non-separable objective function, it is very challenging to achieve the above aim. To this end, the above energy cost minimization problem is reformulated as a Markov game. Then, an HVAC control algorithm is proposed to solve the Markov game based on multi-agent deep reinforcement learning with attention mechanism. The proposed algorithm does not require any prior knowledge of uncertain parameters and can operate without knowing building thermal dynamics models. Simulation results based on real-world traces show the effectiveness, robustness and scalability of the proposed algorithm.
引用
收藏
页码:407 / 419
页数:13
相关论文
共 50 条
  • [21] Efficient multi-agent reinforcement learning HVAC power consumption optimization
    Miao, Chenyang
    Cui, Yunduan
    Li, Huiyun
    Wu, Xinyu
    Energy Reports, 2024, 12 : 5420 - 5431
  • [22] Deep Reinforcement Learning Agent for Negotiation in Multi-Agent Cooperative Distributed Predictive Control
    Aponte-Rengifo, Oscar
    Vega, Pastora
    Francisco, Mario
    APPLIED SCIENCES-BASEL, 2023, 13 (04):
  • [23] Multi-agent reinforcement learning for character control
    Li, Cheng
    Fussell, Levi
    Komura, Taku
    VISUAL COMPUTER, 2021, 37 (12): : 3115 - 3123
  • [24] Multi-agent reinforcement learning for character control
    Cheng Li
    Levi Fussell
    Taku Komura
    The Visual Computer, 2021, 37 : 3115 - 3123
  • [25] A Transfer Learning Framework for Deep Multi-Agent Reinforcement Learning
    Yi Liu
    Xiang Wu
    Yuming Bo
    Jiacun Wang
    Lifeng Ma
    IEEE/CAA Journal of Automatica Sinica, 2024, 11 (11) : 2346 - 2348
  • [26] A Transfer Learning Framework for Deep Multi-Agent Reinforcement Learning
    Liu, Yi
    Wu, Xiang
    Bo, Yuming
    Wang, Jiacun
    Ma, Lifeng
    IEEE/CAA Journal of Automatica Sinica, 2024, 11 (11) : 2346 - 2348
  • [27] A review of cooperative multi-agent deep reinforcement learning
    Afshin Oroojlooy
    Davood Hajinezhad
    Applied Intelligence, 2023, 53 : 13677 - 13722
  • [28] Multi-Agent Deep Reinforcement Learning with Emergent Communication
    Simoes, David
    Lau, Nuno
    Reis, Luis Paulo
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [29] Experience Selection in Multi-Agent Deep Reinforcement Learning
    Wang, Yishen
    Zhang, Zongzhang
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 864 - 870
  • [30] A review of cooperative multi-agent deep reinforcement learning
    Oroojlooy, Afshin
    Hajinezhad, Davood
    APPLIED INTELLIGENCE, 2023, 53 (11) : 13677 - 13722