Translational diffusion of fluorescent probes on a sphere: Monte Carlo simulations, theory, and fluorescence anisotropy experiment

被引:46
|
作者
Krishna, MMG
Das, R
Periasamy, N
Nityananda, R
机构
[1] Tata Inst Fundamental Res, Dept Chem Sci, Colaba 400005, Mumbai, India
[2] Raman Res Inst, Bangalore 560080, Karnataka, India
来源
JOURNAL OF CHEMICAL PHYSICS | 2000年 / 112卷 / 19期
关键词
D O I
10.1063/1.481453
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Translational diffusion of fluorescent molecules on curved surfaces (micelles, vesicles, and proteins) depolarizes the fluorescence. A Monte Carlo simulation method was developed to obtain the fluorescence anisotropy decays for the general case of molecular dipoles tilted at an angle alpha to the surface normal. The method is used to obtain fluorescence anisotropy decay due to diffusion of tilted dipoles on a spherical surface, which matched well with the exact solution for the sphere. The anisotropy decay is a single exponential for alpha=0 degrees, a double exponential for alpha=90 degrees, and three exponentials for intermediate angles. The slower decay component(s) for alpha not equal 0 arise due to the geometric phase factor. Although the anisotropy decay equation contains three exponentials, there are only two parameters, namely alpha and the rate constant, D-tr/R-2, where D-tr is the translational diffusion coefficient and R is the radius of the sphere. It is therefore possible to determine the orientation angle and translational diffusion coefficient from the experimental fluorescence anisotropy data. This method was applied in interpreting the fluorescence anisotropy decay of Nile red in SDS micelles. It is necessary, however, to include two other independent mechanisms of fluorescence depolarization for molecules intercalated in micelles. These are the wobbling dynamics of the molecule about the molecular long axis, and the rotation of the spherical micelle as a whole. The fitting of the fluorescence anisotropy decay to the full equation gave the tilt angle of the molecular dipoles to be 1 +/- 2 degrees and the translational diffusion coefficient to be 1.3 +/- 0.1x10(-10) m(2)/s. (C) 2000 American Institute of Physics. [S0021- 9606(00)51619-5].
引用
收藏
页码:8502 / 8514
页数:13
相关论文
共 50 条
  • [31] Components of detector response function:: Monte Carlo simulations and experiment
    Pekoz, Rengin
    Can, Cuneyt
    X-RAY SPECTROMETRY, 2006, 35 (06) : 347 - 351
  • [32] Elastic properties of soft sphere crystal from Monte Carlo simulations
    Tretiakov, Konstantin V.
    Wojciechowski, Krzysztof W.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (06): : 1699 - 1705
  • [33] Multiscale Modelling of UniMolecular FRET Probes Using Monte Carlo Simulations
    Sanyal, Shourjya
    MacKernan, Donal
    Coker, David F.
    XXVI IUPAP CONFERENCE ON COMPUTATIONAL PHYSICS (CCP2014), 2015, 640
  • [34] Monte Carlo simulations of absorption and fluorescence spectra in ellipsoidal nanocavities
    Gomez, JA
    Thompson, WH
    JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52): : 20144 - 20154
  • [35] Monte Carlo simulations on the potential energy theory of jigging
    Dept. of Metall. and Mat. Eng., COPPE, Univ. Fed. do Rio de Janeiro - UFRJ, Cx. Postal 68505, CEP 21945-970, Rio de Janeiro, RJ, Brazil
    Coal Prep, 1 (71-83):
  • [36] Monte Carlo simulation of a NC gauge theory on the fuzzy sphere
    O'Connor, Denjoe
    Ydri, Badis
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (11):
  • [37] Anisotropy of ultrasonic backscatter by blood in shear flow:: Monte Carlo simulations
    Savéry, D
    Cloutier, G
    2002 IEEE ULTRASONICS SYMPOSIUM PROCEEDINGS, VOLS 1 AND 2, 2002, : 1503 - 1506
  • [38] Comparison of neutron diffusion and Monte Carlo simulations of a fission wave
    Osborne, A. G.
    Deinert, M. R.
    ANNALS OF NUCLEAR ENERGY, 2013, 62 : 269 - 273
  • [39] Understanding quantum tunneling using diffusion Monte Carlo simulations
    Inack, E. M.
    Giudici, G.
    Parolini, T.
    Santoro, G.
    Pilati, S.
    PHYSICAL REVIEW A, 2018, 97 (03)
  • [40] Reaction-diffusion model Monte Carlo simulations on the GPU
    Schram, R. D.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 241 : 95 - 103