Translational diffusion of fluorescent probes on a sphere: Monte Carlo simulations, theory, and fluorescence anisotropy experiment

被引:46
|
作者
Krishna, MMG
Das, R
Periasamy, N
Nityananda, R
机构
[1] Tata Inst Fundamental Res, Dept Chem Sci, Colaba 400005, Mumbai, India
[2] Raman Res Inst, Bangalore 560080, Karnataka, India
来源
JOURNAL OF CHEMICAL PHYSICS | 2000年 / 112卷 / 19期
关键词
D O I
10.1063/1.481453
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Translational diffusion of fluorescent molecules on curved surfaces (micelles, vesicles, and proteins) depolarizes the fluorescence. A Monte Carlo simulation method was developed to obtain the fluorescence anisotropy decays for the general case of molecular dipoles tilted at an angle alpha to the surface normal. The method is used to obtain fluorescence anisotropy decay due to diffusion of tilted dipoles on a spherical surface, which matched well with the exact solution for the sphere. The anisotropy decay is a single exponential for alpha=0 degrees, a double exponential for alpha=90 degrees, and three exponentials for intermediate angles. The slower decay component(s) for alpha not equal 0 arise due to the geometric phase factor. Although the anisotropy decay equation contains three exponentials, there are only two parameters, namely alpha and the rate constant, D-tr/R-2, where D-tr is the translational diffusion coefficient and R is the radius of the sphere. It is therefore possible to determine the orientation angle and translational diffusion coefficient from the experimental fluorescence anisotropy data. This method was applied in interpreting the fluorescence anisotropy decay of Nile red in SDS micelles. It is necessary, however, to include two other independent mechanisms of fluorescence depolarization for molecules intercalated in micelles. These are the wobbling dynamics of the molecule about the molecular long axis, and the rotation of the spherical micelle as a whole. The fitting of the fluorescence anisotropy decay to the full equation gave the tilt angle of the molecular dipoles to be 1 +/- 2 degrees and the translational diffusion coefficient to be 1.3 +/- 0.1x10(-10) m(2)/s. (C) 2000 American Institute of Physics. [S0021- 9606(00)51619-5].
引用
收藏
页码:8502 / 8514
页数:13
相关论文
共 50 条
  • [21] Monte Carlo simulations of Mossbauer spectra in diffusion investigations
    Weinkamer, R
    Fratzl, P
    Sepiol, B
    Vogl, G
    PHYSICAL REVIEW B, 1999, 59 (13): : 8622 - 8625
  • [22] Reaction-controlled diffusion: Monte Carlo simulations
    Reid, Beth A.
    Täuber, Uwe C.
    Brunson, Jason C.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2003, 68 (4 2): : 461211 - 461211
  • [23] Monte Carlo simulations of buffered diffusion of ligands into a synapse
    Dilger, JP
    Shah, N
    BIOPHYSICAL JOURNAL, 2005, 88 (01) : 305A - 306A
  • [24] Monte Carlo simulations of anomalous diffusion of cosmic rays
    Lagutin, A.
    Tyumentsev, A.
    23RD EUROPEAN COSMIC RAY SYMPOSIUM (AND 32ND RUSSIAN COSMIC RAY CONFERENCE), 2013, 409
  • [25] Monte Carlo simulations of sorption and diffusion of isobutane in silicalite
    Paschek, D
    Krishna, R
    CHEMICAL PHYSICS LETTERS, 2001, 342 (1-2) : 148 - 154
  • [26] MONTE-CARLO SIMULATIONS OF TRACER DIFFUSION IN ZEOLITES
    PITALE, KK
    RAJADHYAKSHA, RA
    CURRENT SCIENCE, 1988, 57 (04): : 172 - 178
  • [27] Translational Anisotropy and Rotational Diffusion of Gold Nanorods in Colloidal Sphere Solutions
    Alam, Sharmine
    Mukhopadhyay, Ashis
    LANGMUIR, 2015, 31 (32) : 8780 - 8785
  • [28] Monte Carlo simulations of the electron - gas interactions in the KATRIN experiment
    Kellerer, J.
    Spanier, F.
    JOURNAL OF INSTRUMENTATION, 2022, 17 (06)
  • [29] MONTE-CARLO SIMULATIONS OF DIFFUSION IN ZEOLITES AND COMPARISON WITH THE GENERALIZED MAXWELL-STEFAN THEORY
    VANDENBROEKE, LJP
    NIJHUIS, SA
    KRISHNA, R
    JOURNAL OF CATALYSIS, 1992, 136 (02) : 463 - 477
  • [30] Monte Carlo simulations of trapped ultracold neutrons in the UCNτ experiment
    Callahan, Nathan
    Liu, Chen-Yu
    Gonzalez, Francisco
    Adamek, E.
    Bowman, J. D.
    Broussard, L.
    Clayton, S. M.
    Currie, S.
    Cude-Woods, C.
    Dees, E. B.
    Ding, X.
    Fox, W.
    Geltenbort, P.
    Hickerson, K. P.
    Hoffbauer, M. A.
    Holley, A. T.
    Komives, A.
    MacDonald, S. W. T.
    Makela, M.
    Morris, C. L.
    Ortiz, J. D.
    Pattie, R. W., Jr.
    Ramsey, J.
    Salvat, D. J.
    Saunders, A.
    Sharapov, E., I
    Sjue, S. K. L.
    Tang, Z.
    Vanderwerp, J.
    Vogelaar, B.
    Walstrom, P. L.
    Wang, Z.
    Weaver, H.
    Wei, W.
    Wexler, J.
    Young, A. R.
    PHYSICAL REVIEW C, 2019, 100 (01)