Enhancing Monte Carlo Preconditioning Methods for Matrix Computations

被引:6
|
作者
Strassburg, Janko [1 ]
Alexandrov, Vassil [2 ]
机构
[1] Univ Reading, Reading RG6 2AH, Berks, England
[2] ICREA, Computat Sci Barcelona, Barcelona, Spain
来源
2014 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE | 2014年 / 29卷
关键词
D O I
10.1016/j.procs.2014.05.143
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
An enhanced version of a stochastic SParse Approximate Inverse (SPAI) preconditioner for general matrices is presented. This method is used in contrast to the standard deterministic preconditioners computed by the deterministic SPAI, and its further optimized parallel variant-Modified SParse Approximate Inverse Preconditioner (MSPAI). Thus we present a Monte Carlo preconditioner that relies on the use of Markov Chain Monte Carlo (MCMC) methods to compute a rough matrix inverse first, which is further optimized by an iterative filter process and a parallel refinement, to enhance the accuracy of the preconditioner. Monte Carlo methods quantify the uncertainties by enabling us to estimate the non-zero elements of the inverse matrix with a given precision and certain probability. The advantage of this approach is that we use sparse Monte Carlo matrix inversion whose computational complexity is linear of the size of the matrix. The behaviour of the proposed algorithm is studied, its performance measured and compared with MSPAI.
引用
收藏
页码:1580 / 1589
页数:10
相关论文
共 50 条
  • [41] MONTE CARLO METHODS
    FRANKLIN, JN
    MATHEMATICS OF COMPUTATION, 1965, 19 (90) : 340 - &
  • [42] MONTE CARLO METHODS
    JUNCOSA, ML
    SIAM REVIEW, 1965, 7 (03) : 435 - &
  • [43] On Monte Carlo Methods for Estimating the Fisher Information Matrix in Difficult Problems
    Spall, James C.
    2009 43RD ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS, VOLS 1 AND 2, 2009, : 741 - 746
  • [44] Stability and convergence problems of the Monte Carlo fission matrix acceleration methods
    Dufek, Jan
    Gudowski, Waclaw
    ANNALS OF NUCLEAR ENERGY, 2009, 36 (10) : 1648 - 1651
  • [45] Transition matrix Monte Carlo
    Swendsen, RH
    Diggs, B
    Wang, JS
    Li, ST
    Genovese, C
    Kadane, JB
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1999, 10 (08): : 1563 - 1569
  • [46] Monte Carlo and quasi-Monte Carlo methods - Preface
    Spanier, J
    Pengilly, JH
    MATHEMATICAL AND COMPUTER MODELLING, 1996, 23 (8-9) : R11 - R13
  • [47] Enhancing Performance of Random Testing through Markov Chain Monte Carlo Methods
    Zhou, Bo
    Okamura, Hiroyuki
    Dohi, Tadashi
    IEEE TRANSACTIONS ON COMPUTERS, 2013, 62 (01) : 186 - 192
  • [48] On a Monte Carlo method for neutron transport criticality computations
    Maire, Sylvain
    Talay, Denis
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2006, 26 (04) : 657 - 685
  • [49] RANDOM NUMBER SET FOR MONTE-CARLO COMPUTATIONS
    FRIGERIO, NA
    CLARK, NA
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1975, 22 (NOV16): : 283 - 284
  • [50] Backpropagation and Monte Carlo algorithms for neural network computations
    Junczys, R
    Wit, R
    ACTA PHYSICA POLONICA B, 1996, 27 (09): : 2265 - 2274