Enhancing Performance of Random Testing through Markov Chain Monte Carlo Methods

被引:21
|
作者
Zhou, Bo [1 ]
Okamura, Hiroyuki [2 ]
Dohi, Tadashi [2 ]
机构
[1] Univ Calif Riverside, Dept Comp Sci & Engn, Riverside, CA 92521 USA
[2] Hiroshima Univ, Dept Informat Engn, Grad Sch Engn, Higashihiroshima, Hiroshima 7398527, Japan
关键词
Software testing; random testing; adaptive random testing; Bayes statistics; Markov chain Monte Carlo; PROPORTIONAL SAMPLING STRATEGY;
D O I
10.1109/TC.2011.208
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a probabilistic approach to finding failure-causing inputs based on Bayesian estimation. According to our probabilistic insights of software testing, the test case generation algorithms are developed by Markov chain Monte Carlo (MCMC) methods. Dissimilar to existing random testing schemes such as adaptive random testing, our approach can also utilize the prior knowledge on software testing. In experiments, we compare effectiveness of our MCMC-based random testing with both ordinary random testing and adaptive random testing in real program sources. These results indicate the possibility that MCMC-based random testing can drastically improve the effectiveness of software testing.
引用
收藏
页码:186 / 192
页数:7
相关论文
共 50 条
  • [1] Markov Chain Monte Carlo Random Testing
    Zhou, Bo
    Okamura, Hiroyuki
    Dohi, Tadashi
    [J]. ADVANCES IN COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, PROCEEDINGS, 2010, 6059 : 447 - 456
  • [2] Markov Chain Monte Carlo Combined with Deterministic Methods for Markov Random Field Optimization
    Kim, Wonsik
    Lee, Kyoung Mu
    [J]. CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 1406 - 1413
  • [3] Computational complexity of Markov chain Monte Carlo methods for finite Markov random fields
    Frigessi, A
    Martinelli, F
    Stander, J
    [J]. BIOMETRIKA, 1997, 84 (01) : 1 - 18
  • [4] Hypothesis testing for Markov chain Monte Carlo
    Benjamin M. Gyori
    Daniel Paulin
    [J]. Statistics and Computing, 2016, 26 : 1281 - 1292
  • [5] Hypothesis testing for Markov chain Monte Carlo
    Gyori, Benjamin M.
    Paulin, Daniel
    [J]. STATISTICS AND COMPUTING, 2016, 26 (06) : 1281 - 1292
  • [6] An introduction to Markov chain Monte Carlo methods
    Besag, J
    [J]. MATHEMATICAL FOUNDATIONS OF SPEECH AND LANGUAGE PROCESSING, 2004, 138 : 247 - 270
  • [7] On performance of sphere decoding and Markov chain Monte Carlo detection methods
    Zhu, HDD
    Farhang-Boroujeny, B
    Chen, RR
    [J]. 2005 IEEE 6TH WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS, 2005, : 86 - 90
  • [8] On performance of sphere decoding and Markov chain Monte Carlo detection methods
    Zhu, H
    Farhang-Boroujeny, B
    Chen, RR
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2005, 12 (10) : 669 - 672
  • [9] Particle Markov chain Monte Carlo methods
    Andrieu, Christophe
    Doucet, Arnaud
    Holenstein, Roman
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 : 269 - 342
  • [10] MARGINAL MARKOV CHAIN MONTE CARLO METHODS
    van Dyk, David A.
    [J]. STATISTICA SINICA, 2010, 20 (04) : 1423 - 1454