SOME CHEBYSHEV TYPE INEQUALITIES FOR GENERALIZED RIEMANN-LIOUVILLE OPERATOR

被引:0
|
作者
Halim, B. [1 ]
Senouci, A. [1 ]
Sofrani, M. [1 ]
机构
[1] Univ Tiaret, BP P 78 Zaaroura, Tiaret 14000, Algeria
来源
UFA MATHEMATICAL JOURNAL | 2020年 / 12卷 / 02期
关键词
Chebyshev functional; Integral Inequalities; RL-fractional operator;
D O I
10.13108/2020-12-2-88
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we are interested in the famous inequality introduced by Chebyshev. This inequality has several generalizations and applications in different fields of mathematics and others. In particular it is important for us the applications of fractional calculus for the different integral Chebyshev type inequalities. We establish and prove some theorems and corollaries relating to fractional integral, by applying more general fractional integral operator than Riemann-Liouville one: K-u,v(alpha,beta) = v(x)/Gamma(alpha) integral(x)(0) (x - t)(alpha-1) [ln(x/t)](beta-1) f(t)u(t)dt, x > 0 where alpha > 0, beta >= 1, u and v locally integrable non-negative weight functions, Gamma is the Euler Gamma-function. First, fractional integral Chebyshev type inequalities are obtained for operator K-u,v(alpha,beta) with two synchronous or two asynchronous functions and by induction for several functions. Second, we consider an extended Chebyshev functional T(g, g, p, q) := integral(b)(a) q(x)dx integral(b)(a) p(x)f(x)g(x)dx + integral(b)(a) p(x)dx integral(b)(a) q(x)f(x)g(x)dx -(integral(b)(a) q(x)f(x)dx) (integral(b)(a) p(x)g(x)dx) -(integral(b)(a) p(x)f(x)dx) (integral(b)(a) q(x)g(x)dx) where p, q are positive integrable weight functions on [a,b]. In this case fractional integral weighted inequalities are established for two fractional integral operators K-u1,v1(alpha 1,beta 1) and K-u2,v2(alpha 2,beta 2), with two synchronous or asynchronous functions, where alpha(1) not equal alpha(2), beta(1) not equal beta(2) and u(1) not equal u(2), v(1) not equal v(2). In addition, a fractional integral H<spacing diaeresis>older type inequality for several functions is established using the operator K-u,v(alpha,beta). At the end, another fractional integral Chebyshev type inequality is given for increasing function f and differentiable function g.
引用
收藏
页码:88 / 96
页数:9
相关论文
共 50 条
  • [1] The Riemann-liouville operator to generate some integral inequalities
    El Farissi, Abdallah
    Dahmani, Zoubir
    Bouraoui, Yasmina Khati
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2011, 14 (04) : 445 - 452
  • [2] CERTAIN INEQUALITIES RELATED TO THE CHEBYSHEV'S FUNCTIONAL INVOLVING A RIEMANN-LIOUVILLE OPERATOR
    Dahmani, Zoubir
    Mechouar, Ouahiba
    Brahami, Salima
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 3 (04): : 38 - 44
  • [3] On Some Generalized Integral Inequalities for Riemann-Liouville Fractional Integrals
    Sarikaya, Mehmet Zeki
    Filiz, Hatice
    Kiris, Mehmet Eyup
    FILOMAT, 2015, 29 (06) : 1307 - 1314
  • [4] Inequalities for Riemann-Liouville operator involving suprema
    Dmitry V. Prokhorov
    Collectanea mathematica, 2010, 61 : 263 - 276
  • [5] Inequalities for Riemann-Liouville operator involving suprema
    Prokhorov, Dmitry V.
    COLLECTANEA MATHEMATICA, 2010, 61 (03) : 263 - 276
  • [6] Generalized inequalities involving fractional operators of the Riemann-Liouville type
    Bosch, Paul
    Carmenate, Hector J.
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    AIMS MATHEMATICS, 2022, 7 (01): : 1470 - 1485
  • [7] NEW CHEBYSHEV-TYPE INEQUALITIES FOR THE GENERALIZED RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL WITH RESPECT TO AN INCREASING FUNCTION
    Varosanec, Sanja
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2023, 17 (04): : 1351 - 1361
  • [8] GENERALIZED EXTENDED RIEMANN-LIOUVILLE TYPE FRACTIONAL DERIVATIVE OPERATOR
    Abbas, Hafida
    Azzouz, Abdelhalim
    Zahaf, Mohammed Brahim
    Belmekki, Mohammed
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2023, 47 (01): : 57 - 80
  • [9] Some generalized Riemann-Liouville k-fractional integral inequalities
    Praveen Agarwal
    Jessada Tariboon
    Sotiris K Ntouyas
    Journal of Inequalities and Applications, 2016
  • [10] Some generalized Riemann-Liouville k-fractional integral inequalities
    Agarwal, Praveen
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,