INTEGERS REPRESENTED BY x4 - y4 REVISITED

被引:0
|
作者
Bennett, Michael A. [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Diophantine equations; Frey curves; modularity; EQUATIONS;
D O I
10.1017/S0004972720000441
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We sharpen earlier work of Dabrowski on near-perfect power values of the quartic form x(4) - y(4), through appeal to Frey curves of various signatures and related techniques.
引用
收藏
页码:38 / 49
页数:12
相关论文
共 50 条
  • [41] MONITORING THE FRAGMENTATION OF C/2019 Y4 (ATLAS)
    Sonka, Adrian Bruno
    Birlan, Mirel
    Nedelcu, Dan Alin
    ROMANIAN ASTRONOMICAL JOURNAL, 2020, 30 (02): : 153 - 163
  • [42] A note on a theorem of Ljunggren and the Diophantine equations x2–kxy2 + y4 = 1, 4
    Gary Walsh
    Archiv der Mathematik, 1999, 73 : 119 - 125
  • [43] Fourier transform infrared emission spectroscopy of the C4Δ-X4Φ, G4Φ-X4Φ, and G4Φ-C4Δ systems of TiCl
    Ram, RS
    Bernath, PF
    JOURNAL OF MOLECULAR SPECTROSCOPY, 1997, 186 (01) : 113 - 130
  • [44] On the diophantine equation X2-(1+a2)Y4=-2a
    Yuan PingZhi
    Zhang ZhongFeng
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (08) : 2143 - 2158
  • [45] On the Diophantine equation x4 - q4 = pyr
    Bajolet, Aurelien
    Dupuy, Benjamin
    Luca, Florian
    Togbe, Alain
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2011, 79 (3-4): : 269 - 282
  • [46] 丢番图方程X2-(a2+1)Y4=3-4a
    管训贵
    数学学报(中文版), 2016, 59 (01) : 21 - 36
  • [47] Estimate from below for the x2 y4 potential and closely related potentials
    Camus, Brice
    ANALYSIS AND MATHEMATICAL PHYSICS, 2016, 6 (01) : 59 - 66
  • [48] On the diophantine equation X2-(1+a2)Y4 =-2a
    YUAN PingZhi 1 & ZHANG ZhongFeng 2 1 School of Mathematics
    2 School of Mathematics & Computational Science
    ScienceChina(Mathematics), 2010, 53 (08) : 2143 - 2158
  • [49] A NOTE ON TWO DIOPHANTINE EQUATIONS x2 ± 2a pb = y4
    Zhu, Huilin
    Soydan, Gokhan
    Qin, Wei
    MISKOLC MATHEMATICAL NOTES, 2013, 14 (03) : 1105 - 1111
  • [50] On the diophantine equation X2 − (1 + a2)Y4 = −2a
    PingZhi Yuan
    ZhongFeng Zhang
    Science China Mathematics, 2010, 53 : 2143 - 2158