The non-existence of maximal sets of four mutually orthogonal Latin squares of order 8

被引:4
|
作者
Drake, DA [1 ]
Myrvold, W
机构
[1] Univ Florida, Dept Math, Gainesville, FL 32611 USA
[2] Univ Victoria, Dept Comp Sci, Victoria, BC V8W 3P6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
mutually orthogonal Latin squares; net; ovals in nets; projective Hjelmslev plane;
D O I
10.1023/B:DESI.0000032607.03637.1c
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We establish the non- existence of a maximal set of four mols ( mutually orthogonal Latin squares) of order 8 and the non- existence of (8, 5) projective Hjelmslev planes. We present a maximal set of four mols of order 9.
引用
收藏
页码:63 / 69
页数:7
相关论文
共 50 条
  • [1] The Non-Existence of Maximal Sets of Four Mutually Orthogonal Latin Squares of Order 8
    David A. Drake
    Wendy Myrvold
    Designs, Codes and Cryptography, 2004, 33 : 63 - 69
  • [2] Maximal sets of mutually orthogonal Latin squares
    Drake, DA
    van Rees, GHJ
    Wallis, WD
    DISCRETE MATHEMATICS, 1999, 194 (1-3) : 87 - 94
  • [3] MAXIMAL SETS OF MUTUALLY ORTHOGONAL IDEMPOTENT LATIN SQUARES
    MENDELSOHN, NS
    CANADIAN MATHEMATICAL BULLETIN, 1971, 14 (03): : 449 - +
  • [4] Some New Maximal Sets of Mutually Orthogonal Latin Squares
    P. Govaerts
    D. Jungnickel
    L. Storme
    J. A. Thas
    Designs, Codes and Cryptography, 2003, 29 : 141 - 147
  • [5] MAXIMAL SETS OF MUTUALLY ORTHOGONAL LATIN SQUARES .2.
    EVANS, AB
    EUROPEAN JOURNAL OF COMBINATORICS, 1992, 13 (05) : 345 - 350
  • [6] Some new maximal sets of mutually orthogonal Latin squares
    Govaerts, P
    Jungnickel, D
    Storme, L
    Thas, JA
    DESIGNS CODES AND CRYPTOGRAPHY, 2003, 29 (1-3) : 141 - 147
  • [7] MAXIMAL SETS OF MUTUALLY ORTHOGONAL LATIN SQUARES .1.
    EVANS, AB
    EUROPEAN JOURNAL OF COMBINATORICS, 1991, 12 (06) : 477 - 482
  • [8] Four Mutually Orthogonal Latin Squares of Order 14
    Todorov, D. T.
    JOURNAL OF COMBINATORIAL DESIGNS, 2012, 20 (08) : 363 - 367
  • [9] Maximal sets of mutually orthogonal frequency squares
    Nicholas J. Cavenagh
    Adam Mammoliti
    Ian M. Wanless
    Designs, Codes and Cryptography, 2021, 89 : 525 - 558
  • [10] Maximal sets of mutually orthogonal frequency squares
    Cavenagh, Nicholas J.
    Mammoliti, Adam
    Wanless, Ian M.
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (03) : 525 - 558