The non-existence of maximal sets of four mutually orthogonal Latin squares of order 8

被引:4
|
作者
Drake, DA [1 ]
Myrvold, W
机构
[1] Univ Florida, Dept Math, Gainesville, FL 32611 USA
[2] Univ Victoria, Dept Comp Sci, Victoria, BC V8W 3P6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
mutually orthogonal Latin squares; net; ovals in nets; projective Hjelmslev plane;
D O I
10.1023/B:DESI.0000032607.03637.1c
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We establish the non- existence of a maximal set of four mols ( mutually orthogonal Latin squares) of order 8 and the non- existence of (8, 5) projective Hjelmslev planes. We present a maximal set of four mols of order 9.
引用
收藏
页码:63 / 69
页数:7
相关论文
共 50 条
  • [41] Mutually Orthogonal Latin Squares as Group Transversals
    Pradhan, Rohitesh
    Jain, Vivek Kumar
    DISCRETE MATHEMATICS AND APPLICATIONS, 2023, 33 (02): : 99 - 103
  • [42] Enumerating extensions of mutually orthogonal Latin squares
    Simona Boyadzhiyska
    Shagnik Das
    Tibor Szabó
    Designs, Codes and Cryptography, 2020, 88 : 2187 - 2206
  • [43] EXTENDING MUTUALLY ORTHOGONAL PARTIAL LATIN SQUARES
    LINDNER, CC
    ACTA SCIENTIARUM MATHEMATICARUM, 1971, 32 (3-4): : 283 - &
  • [44] Sets of mutually orthogonal Sudoku frequency squares
    Ethier, John T.
    Mullen, Gary L.
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (01) : 57 - 65
  • [45] THE MAXIMUM NUMBER OF MUTUALLY ORTHOGONAL LATIN SQUARES
    陆鸣皋
    Science Bulletin, 1985, (02) : 154 - 159
  • [46] CONCERNING NUMBER OF MUTUALLY ORTHOGONAL LATIN SQUARES
    WILSON, RM
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (05): : 805 - &
  • [47] Concerning eight mutually orthogonal Latin squares
    Abel, R. Julian R.
    Cavenagh, Nicholas
    JOURNAL OF COMBINATORIAL DESIGNS, 2007, 15 (03) : 255 - 261
  • [48] Mutually Orthogonal Sudoku Latin Squares and Their Graphs
    Sho Kubota
    Sho Suda
    Akane Urano
    Graphs and Combinatorics, 2023, 39
  • [49] Sets of mutually orthogonal Sudoku frequency squares
    John T. Ethier
    Gary L. Mullen
    Designs, Codes and Cryptography, 2019, 87 : 57 - 65
  • [50] Blocking Sets and Large Transversal-Free Systems of Mutually Orthogonal Latin Squares
    Bruen, Aiden A.
    ERROR-CORRECTING CODES, FINITE GEOMETRIES AND CRYPTOGRAPHY, 2010, 523 : 77 - 82