MAXIMAL SETS OF MUTUALLY ORTHOGONAL LATIN SQUARES .1.

被引:4
|
作者
EVANS, AB [1 ]
机构
[1] WRIGHT STATE UNIV,DEPT MATH & STAT,DAYTON,OH 45435
关键词
D O I
10.1016/S0195-6698(13)80098-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
One problem of interest in the study of latin squares is that of determining parameter pairs (n, r) for which there exists a maximal set of r mutually orthogonal latin squares of order n. In this paper we find new such parameter pairs by constructing maximal sets of mutually orthogonal latin squares using difference matrices. In the process we generalize known non-existence results for complete mappings, strong complete mappings and Knut Vic designs. © 1991, Academic Press Limited. All rights reserved.
引用
收藏
页码:477 / 482
页数:6
相关论文
共 50 条
  • [1] Maximal sets of mutually orthogonal Latin squares
    Drake, DA
    van Rees, GHJ
    Wallis, WD
    DISCRETE MATHEMATICS, 1999, 194 (1-3) : 87 - 94
  • [2] MAXIMAL SETS OF MUTUALLY ORTHOGONAL IDEMPOTENT LATIN SQUARES
    MENDELSOHN, NS
    CANADIAN MATHEMATICAL BULLETIN, 1971, 14 (03): : 449 - +
  • [3] Some New Maximal Sets of Mutually Orthogonal Latin Squares
    P. Govaerts
    D. Jungnickel
    L. Storme
    J. A. Thas
    Designs, Codes and Cryptography, 2003, 29 : 141 - 147
  • [4] MAXIMAL SETS OF MUTUALLY ORTHOGONAL LATIN SQUARES .2.
    EVANS, AB
    EUROPEAN JOURNAL OF COMBINATORICS, 1992, 13 (05) : 345 - 350
  • [5] Some new maximal sets of mutually orthogonal Latin squares
    Govaerts, P
    Jungnickel, D
    Storme, L
    Thas, JA
    DESIGNS CODES AND CRYPTOGRAPHY, 2003, 29 (1-3) : 141 - 147
  • [6] Maximal sets of mutually orthogonal frequency squares
    Nicholas J. Cavenagh
    Adam Mammoliti
    Ian M. Wanless
    Designs, Codes and Cryptography, 2021, 89 : 525 - 558
  • [7] Maximal sets of mutually orthogonal frequency squares
    Cavenagh, Nicholas J.
    Mammoliti, Adam
    Wanless, Ian M.
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (03) : 525 - 558
  • [8] Parity of sets of mutually orthogonal Latin squares
    Francetic, Nevena
    Herke, Sarada
    Wanless, Ian M.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2018, 155 : 67 - 99
  • [9] SETS OF MUTUALLY ORTHOGONAL LATIN SQUARES WITH LIKE SUBSQUARES
    ROBERTS, CE
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1992, 61 (01) : 50 - 63
  • [10] The non-existence of maximal sets of four mutually orthogonal Latin squares of order 8
    Drake, DA
    Myrvold, W
    DESIGNS CODES AND CRYPTOGRAPHY, 2004, 33 (01) : 63 - 69