机构:
Tel Aviv Univ, Sackler Sch Math Sci, IL-6997801 Tel Aviv, Israel
Tel Aviv Univ, Blavatnik Sch Comp Sci, IL-6997801 Tel Aviv, Israel
Harvard Univ, CMSA, Cambridge, MA 02138 USATel Aviv Univ, Sackler Sch Math Sci, IL-6997801 Tel Aviv, Israel
Alon, Noga
[1
,2
,3
]
Krivelevich, Michael
论文数: 0引用数: 0
h-index: 0
机构:
Tel Aviv Univ, Sackler Sch Math Sci, IL-6997801 Tel Aviv, IsraelTel Aviv Univ, Sackler Sch Math Sci, IL-6997801 Tel Aviv, Israel
Krivelevich, Michael
[1
]
机构:
[1] Tel Aviv Univ, Sackler Sch Math Sci, IL-6997801 Tel Aviv, Israel
[2] Tel Aviv Univ, Blavatnik Sch Comp Sci, IL-6997801 Tel Aviv, Israel
coloring;
cliques;
random graphs;
TRANSVERSAL SETS;
MAXIMAL CLIQUES;
D O I:
10.1002/jgt.22222
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
The clique chromatic number of a graph G=(V,E) is the minimum number of colors in a vertex coloring so that no maximal (with respect to containment) clique is monochromatic. We prove that the clique chromatic number of the binomial random graph G=G(n,1/2) is, with high probability, (logn). This settles a problem of McDiarmid, Mitsche, and Praat who proved that it is O(logn) with high probability.
机构:
Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Dept Math, IL-69978 Tel Aviv, IsraelTel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Dept Math, IL-69978 Tel Aviv, Israel
Krivelevich, M
Sudakov, B
论文数: 0引用数: 0
h-index: 0
机构:
Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Dept Math, IL-69978 Tel Aviv, IsraelTel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Dept Math, IL-69978 Tel Aviv, Israel