Clique coloring of dense random graphs

被引:4
|
作者
Alon, Noga [1 ,2 ,3 ]
Krivelevich, Michael [1 ]
机构
[1] Tel Aviv Univ, Sackler Sch Math Sci, IL-6997801 Tel Aviv, Israel
[2] Tel Aviv Univ, Blavatnik Sch Comp Sci, IL-6997801 Tel Aviv, Israel
[3] Harvard Univ, CMSA, Cambridge, MA 02138 USA
基金
以色列科学基金会;
关键词
coloring; cliques; random graphs; TRANSVERSAL SETS; MAXIMAL CLIQUES;
D O I
10.1002/jgt.22222
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The clique chromatic number of a graph G=(V,E) is the minimum number of colors in a vertex coloring so that no maximal (with respect to containment) clique is monochromatic. We prove that the clique chromatic number of the binomial random graph G=G(n,1/2) is, with high probability, (logn). This settles a problem of McDiarmid, Mitsche, and Praat who proved that it is O(logn) with high probability.
引用
收藏
页码:428 / 433
页数:6
相关论文
共 50 条
  • [1] Clique coloring of binomial random graphs
    McDiarmid, Colin
    Mitsche, Dieter
    Pralat, Pawel
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2019, 54 (04) : 589 - 614
  • [2] CLIQUE COVERS AND COLORING PROBLEMS OF GRAPHS
    KLOTZ, W
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1989, 46 (03) : 338 - 345
  • [3] Tight asymptotics of clique-chromatic numbers of dense random graphs
    Demidovich, Yu.
    Zhukovskii, M.
    [J]. JOURNAL OF GRAPH THEORY, 2023, 103 (03) : 451 - 461
  • [4] Clique-transversal sets and clique-coloring in planar graphs
    Shan, Erfang
    Liang, Zuosong
    Kang, Liying
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2014, 36 : 367 - 376
  • [5] Coloring Graphs with Dense Neighborhoods
    Rabern, Landon
    [J]. JOURNAL OF GRAPH THEORY, 2014, 76 (04) : 323 - 340
  • [6] COLORING RANDOM GRAPHS
    GRIMMETT, GR
    MCDIARMID, CJH
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 77 (MAR) : 313 - 324
  • [7] COLORING RANDOM GRAPHS
    FURER, M
    SUBRAMANIAN, CR
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1992, 621 : 284 - 291
  • [8] Coloring random graphs
    Krivelevich, M
    Sudakov, B
    [J]. INFORMATION PROCESSING LETTERS, 1998, 67 (02) : 71 - 74
  • [9] Coloring random graphs
    Mulet, R
    Pagnani, A
    Weigt, M
    Zecchina, R
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (26)
  • [10] Clique percolation in random graphs
    Li, Ming
    Deng, Youjin
    Wang, Bing-Hong
    [J]. PHYSICAL REVIEW E, 2015, 92 (04)