Clique coloring of dense random graphs

被引:4
|
作者
Alon, Noga [1 ,2 ,3 ]
Krivelevich, Michael [1 ]
机构
[1] Tel Aviv Univ, Sackler Sch Math Sci, IL-6997801 Tel Aviv, Israel
[2] Tel Aviv Univ, Blavatnik Sch Comp Sci, IL-6997801 Tel Aviv, Israel
[3] Harvard Univ, CMSA, Cambridge, MA 02138 USA
基金
以色列科学基金会;
关键词
coloring; cliques; random graphs; TRANSVERSAL SETS; MAXIMAL CLIQUES;
D O I
10.1002/jgt.22222
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The clique chromatic number of a graph G=(V,E) is the minimum number of colors in a vertex coloring so that no maximal (with respect to containment) clique is monochromatic. We prove that the clique chromatic number of the binomial random graph G=G(n,1/2) is, with high probability, (logn). This settles a problem of McDiarmid, Mitsche, and Praat who proved that it is O(logn) with high probability.
引用
下载
收藏
页码:428 / 433
页数:6
相关论文
共 50 条
  • [21] Randomly Coloring Random Graphs
    Dyer, Martin
    Frieze, Alan
    RANDOM STRUCTURES & ALGORITHMS, 2010, 36 (03) : 251 - 272
  • [22] THE COMPLEXITY OF COLORING PROBLEMS ON DENSE GRAPHS
    EDWARDS, K
    THEORETICAL COMPUTER SCIENCE, 1986, 43 (2-3) : 337 - 343
  • [23] Equitable Coloring of Random Graphs
    Krivelevich, Michael
    Patkos, Balazs
    RANDOM STRUCTURES & ALGORITHMS, 2009, 35 (01) : 83 - 99
  • [24] Random Coloring Evolution on Graphs
    Xin Xing CHEN Department of Mathematics
    Acta Mathematica Sinica,English Series, 2010, 26 (02) : 369 - 376
  • [25] Random coloring evolution on graphs
    Xin Xing Chen
    Jian Gang Ying
    Acta Mathematica Sinica, English Series, 2010, 26 : 369 - 376
  • [26] Random coloring evolution on graphs
    Chen, Xin Xing
    Ying, Jian Gang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (02) : 369 - 376
  • [27] On the structure of Dense graphs with bounded clique number
    Oberkampf, Heiner
    Schacht, Mathias
    COMBINATORICS PROBABILITY & COMPUTING, 2020, 29 (05): : 641 - 649
  • [28] Fractional Clique Decompositions of Dense Partite Graphs
    Montgomery, Richard
    COMBINATORICS PROBABILITY & COMPUTING, 2017, 26 (06): : 911 - 943
  • [29] Parameterized clique on inhomogeneous random graphs
    Friedrich, Tobias
    Krohmer, Anton
    DISCRETE APPLIED MATHEMATICS, 2015, 184 : 130 - 138
  • [30] Fractional clique decompositions of dense graphs and hypergraphs
    Barber, Ben
    Kuhn, Daniela
    Lo, Allan
    Montgomery, Richard
    Osthus, Deryk
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2017, 127 : 148 - 186