Tight asymptotics of clique-chromatic numbers of dense random graphs

被引:0
|
作者
Demidovich, Yu. [1 ,3 ]
Zhukovskii, M. [2 ]
机构
[1] King Abdullah Univ Sci & Technol, KAUST Artificial Intelligence Initiat, Thuwal, Saudi Arabia
[2] Univ Sheffield, Dept Comp Sci, Sheffield, England
[3] King Abdullah Univ Sci & Technol, KAUST Artificial Intelligence Initiat, JZMA7651,Andaleeb Ln,7651, Thuwal, Saudi Arabia
关键词
cliques; coloring; random graphs;
D O I
10.1002/jgt.22927
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The clique-chromatic number of a graph is the minimum number of colors required to assign to its vertex set so that no inclusion maximal clique is monochromatic. McDiarmid, Mitsche, and Pralat proved that the clique-chromatic number of the binomial random graph G(n, 1\2) is at most (1\2 + 0(1) log(2)n with high probability (whp). Alon and Krivelevich showed that it is greater than 1\2000 log(2)n whp and suggested that the right constant in front of the logarithm is 1\2. We prove their conjecture and, beyond that, obtain a tight concentration result: whp chi(c) (G(n, 1\2)) = 1\2 log(2)n - Theta (ln ln n).
引用
下载
收藏
页码:451 / 461
页数:11
相关论文
共 50 条
  • [1] Graphs with large clique-chromatic numbers
    Wichianpaisarn, Tanawat
    Uiyyasathian, Chariya
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2015, 7 (04)
  • [2] Clique-chromatic Numbers of Line Graphs
    Wichianpaisarn, Tanawat
    Uiyyasathian, Chariya
    ARS COMBINATORIA, 2015, 118 : 285 - 291
  • [3] New Bounds for the Clique-Chromatic Numbers of Johnson Graphs
    A. M. Raigorodskii
    M. M. Koshelev
    Doklady Mathematics, 2020, 101 : 66 - 67
  • [4] New bounds on clique-chromatic numbers of Johnson graphs
    Raigorodskii, A. M.
    Koshelev, M. M.
    DISCRETE APPLIED MATHEMATICS, 2020, 283 : 724 - 729
  • [5] New Bounds for the Clique-Chromatic Numbers of Johnson Graphs
    Raigorodskii, A. M.
    Koshelev, M. M.
    DOKLADY MATHEMATICS, 2020, 101 (01) : 66 - 67
  • [6] More Results on Clique-chromatic Numbers of Graphs with No Long Path
    Wichianpaisarn, Tanawat
    Uiyyasathian, Chariya
    DISCRETE AND COMPUTATIONAL GEOMETRY AND GRAPHS, JCDCGG 2013, 2014, 8845 : 185 - 190
  • [7] The chromatic and clique numbers of random scaled sector graphs
    Díaz, J
    Sanwalani, V
    Serna, M
    Spirakis, PG
    THEORETICAL COMPUTER SCIENCE, 2005, 349 (01) : 40 - 51
  • [8] Perfect graphs of arbitrarily large clique-chromatic number
    Charbit, Pierre
    Penev, Irena
    Thomasse, Stephan
    Trotignon, Nicolas
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2016, 116 : 456 - 464
  • [9] Clique Chromatic Numbers of Intersection Graphs
    D. A. Zakharov
    A. M. Raigorodskii
    Mathematical Notes, 2019, 105 : 137 - 139
  • [10] Clique Chromatic Numbers of Intersection Graphs
    Zakharov, D. A.
    Raigorodskii, A. M.
    MATHEMATICAL NOTES, 2019, 105 (1-2) : 137 - 139