Tight asymptotics of clique-chromatic numbers of dense random graphs

被引:0
|
作者
Demidovich, Yu. [1 ,3 ]
Zhukovskii, M. [2 ]
机构
[1] King Abdullah Univ Sci & Technol, KAUST Artificial Intelligence Initiat, Thuwal, Saudi Arabia
[2] Univ Sheffield, Dept Comp Sci, Sheffield, England
[3] King Abdullah Univ Sci & Technol, KAUST Artificial Intelligence Initiat, JZMA7651,Andaleeb Ln,7651, Thuwal, Saudi Arabia
关键词
cliques; coloring; random graphs;
D O I
10.1002/jgt.22927
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The clique-chromatic number of a graph is the minimum number of colors required to assign to its vertex set so that no inclusion maximal clique is monochromatic. McDiarmid, Mitsche, and Pralat proved that the clique-chromatic number of the binomial random graph G(n, 1\2) is at most (1\2 + 0(1) log(2)n with high probability (whp). Alon and Krivelevich showed that it is greater than 1\2000 log(2)n whp and suggested that the right constant in front of the logarithm is 1\2. We prove their conjecture and, beyond that, obtain a tight concentration result: whp chi(c) (G(n, 1\2)) = 1\2 log(2)n - Theta (ln ln n).
引用
收藏
页码:451 / 461
页数:11
相关论文
共 50 条
  • [31] Independence numbers and chromatic numbers of random subgraphs in some sequences of graphs
    L. I. Bogolyubskii
    A. S. Gusev
    M. M. Pyaderkin
    A. M. Raigorodskii
    Doklady Mathematics, 2014, 90 : 462 - 465
  • [32] Independence numbers and chromatic numbers of the random subgraphs of some distance graphs
    Bogolubsky, L. I.
    Gusev, A. S.
    Pyaderkin, M. M.
    Raigorodskii, A. M.
    SBORNIK MATHEMATICS, 2015, 206 (10) : 1340 - 1374
  • [33] Sharp concentration of the equitable chromatic number of dense random graphs
    Heckel, Annika
    COMBINATORICS PROBABILITY & COMPUTING, 2020, 29 (02): : 213 - 233
  • [34] The clique numbers of regular graphs
    Punnim, N
    GRAPHS AND COMBINATORICS, 2002, 18 (04) : 781 - 785
  • [35] The Clique Numbers of Regular Graphs
    Narong Punnim
    Graphs and Combinatorics, 2002, 18 : 781 - 785
  • [36] Circular chromatic numbers and fractional chromatic numbers of distance graphs
    Chang, GJ
    Huang, LL
    Zhu, XD
    EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (04) : 423 - 431
  • [37] Graphs with tiny vector chromatic numbers and huge chromatic numbers
    Feige, U
    Langberg, M
    Schechtman, G
    FOCS 2002: 43RD ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2002, : 283 - 292
  • [38] Graphs with tiny vector chromatic numbers and huge chromatic numbers
    Feige, U
    Langberg, M
    Schechtman, G
    SIAM JOURNAL ON COMPUTING, 2004, 33 (06) : 1338 - 1368
  • [39] Clique percolation in random graphs
    Li, Ming
    Deng, Youjin
    Wang, Bing-Hong
    PHYSICAL REVIEW E, 2015, 92 (04)
  • [40] Fractional clique decompositions of dense graphs
    Montgomery, Richard
    RANDOM STRUCTURES & ALGORITHMS, 2019, 54 (04) : 779 - 796