Lsh regulates LTR retrotransposon repression independently of Dnmt3b function

被引:39
|
作者
Dunican, Donncha S. [1 ]
Cruickshanks, Hazel A. [1 ]
Suzuki, Masako [2 ,3 ]
Semple, Colin A. [1 ]
Davey, Tracey [4 ]
Arceci, Robert J. [5 ]
Greally, John [2 ,3 ]
Adams, Ian R. [1 ]
Meehan, Richard R. [1 ]
机构
[1] Univ Edinburgh, MRC, Inst Genet & Mol Med, Human Genet Unit, Edinburgh EH4 2XU, Midlothian, Scotland
[2] Albert Einstein Coll Med, Dept Genet Computat Genet, Bronx, NY 10467 USA
[3] Albert Einstein Coll Med, Ctr Epigen, Bronx, NY 10467 USA
[4] Newcastle Univ, Newcastle Med Sch, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England
[5] Johns Hopkins, Baltimore, MD USA
基金
英国生物技术与生命科学研究理事会; 英国医学研究理事会;
关键词
DE-NOVO METHYLATION; PROMOTER DNA METHYLATION; EARLY MOUSE DEVELOPMENT; EMBRYONIC STEM-CELLS; CYTOSINE METHYLATION; MAMMALIAN DEVELOPMENT; SNF2; FAMILY; REPETITIVE SEQUENCES; GROWTH-RETARDATION; SATELLITE REPEATS;
D O I
10.1186/gb-2013-14-12-r146
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: DNA methylation contributes to genomic integrity by suppressing repeat-associated transposition. In addition to the canonical DNA methyltransferases, several auxiliary chromatin factors are required to maintain DNA methylation at intergenic and satellite repeats. The interaction between Lsh, a chromatin helicase, and the de novo methyltransferase Dnmt3b facilitates deposition of DNA methylation at stem cell genes, which are hypomethylated in Lsh(-/-) embryos. We wished to determine if a similar targeting mechanism operates to maintain DNA methylation at repetitive sequences. Results: We mapped genome-wide DNA methylation patterns in Lsh(-/-) and Dnmt3b(-/-) somatic cells. DNA methylation is predominantly lost from specific genomic repeats in Lsh(-/-) cells: LTR -retrotransposons, LINE-1 repeats and mouse satellites. RNA-seq experiments demonstrate that specific IAP LTRs and satellites, but not LINE-1 elements, are aberrantly transcribed in Lsh(-/-) cells. LTR hypomethylation in Dnmt3b(-/-) cells is moderate, whereas IAP, LINE-1 and satellite elements are hypomethylated but silent. Repressed LINE-1 elements in Lsh(-/-) cells gain H3K4me3, but H3K9me3 levels are unaltered, indicating that DNA hypomethylation alone is not permissive for their transcriptional activation. Mis-expressed IAPs and satellites lose H3K9me3 and gain H3K4me3 in Lsh(-/-) cells. Conclusions: Our study emphasizes that regulation of repetitive elements by Lsh and DNA methylation is selective and context dependent. Silencing of repeats in somatic cells appears not to be critically dependent on Dnmt3b function. We propose a model where Lsh is specifically required at a precise developmental window to target de novo methylation to repeat sequences, which is subsequently maintained by Dnmt1 to enforce selective repeat silencing.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Oncogenic Roles and Inhibitors of DNMT1, DNMT3A, a DNMT3B in Acute Myeloid Leukaemia
    Wong, Kah Keng
    Lawrie, Charles H.
    Green, Tina M.
    BIOMARKER INSIGHTS, 2019, 14
  • [42] Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells
    Liao, Jing
    Karnik, Rahul
    Gu, Hongcang
    Ziller, Michael J.
    Clement, Kendell
    Tsankov, Alexander M.
    Akopian, Veronika
    Gifford, Casey A.
    Donaghey, Julie
    Galonska, Christina
    Pop, Ramona
    Reyon, Deepak
    Tsai, Shengdar Q.
    Mallard, William
    Joung, J. Keith
    Rinn, John L.
    Gnirke, Andreas
    Meissner, Alexander
    NATURE GENETICS, 2015, 47 (05) : 469 - U64
  • [43] DNMT3B polymorphisms and risk of primary lung cancer
    Lee, SJ
    Jeon, HS
    Park, SH
    Lee, GY
    Lee, BH
    Kim, CH
    Kang, YM
    Lee, WK
    Kam, S
    Park, RW
    Kim, IS
    Cho, YL
    Jung, TH
    Park, JY
    CARCINOGENESIS, 2005, 26 (02) : 403 - 409
  • [44] Loss of Dnmt3b function upregulates the tumor modifier Ment and accelerates mouse lymphomagenesis
    Hlady, Ryan A.
    Novakova, Slavomira
    Opavska, Jana
    Klinkebiel, David
    Peters, Staci L.
    Bies, Juraj
    Hannah, Jay
    Iqbal, Javeed
    Anderson, Kristi M.
    Siebler, Hollie M.
    Smith, Lynette M.
    Greiner, Timothy C.
    Bastola, Dhundy
    Joshi, Shantaram
    Lockridge, Oksana
    Simpson, Melanie A.
    Felsher, Dean W.
    Wagner, Kay-Uwe
    Chan, Wing C.
    Christman, Judith K.
    Opavsky, Rene
    JOURNAL OF CLINICAL INVESTIGATION, 2012, 122 (01): : 163 - 177
  • [45] Structure-Guided Identification of DNMT3B Inhibitors
    Newton, Ana S.
    Faver, John C.
    Micevic, Goran
    Muthusamy, Viswanathan
    Kudalkar, Shalley N.
    Bertoletti, Nicole
    Anderson, Karen S.
    Bosenberg, Marcus W.
    Jorgensen, William L.
    ACS MEDICINAL CHEMISTRY LETTERS, 2020, 11 (05): : 971 - 976
  • [46] DNMT3B PWWP mutations cause hypermethylation of heterochromatin
    Taglini, Francesca
    Kafetzopoulos, Ioannis
    Rolls, Willow
    Musialik, Kamila Irena
    Lee, Heng Yang
    Zhang, Yujie
    Marenda, Mattia
    Kerr, Lyndsay
    Finan, Hannah
    Rubio-Ramon, Cristina
    Gautier, Philippe
    Wapenaar, Hannah
    Kumar, Dhananjay
    Davidson-Smith, Hazel
    Wills, Jimi
    Murphy, Laura
    Wheeler, Ann
    Wilson, Marcus
    Sproul, Duncan
    EMBO REPORTS, 2024, 25 (03) : 1130 - 1155
  • [47] Genomic organization and promoter analysis of the Dnmt3b gene
    Ishida, C
    Ura, K
    Hirao, A
    Sasaki, H
    Toyoda, A
    Sakaki, Y
    Niwa, H
    Li, E
    Kaneda, Y
    GENE, 2003, 310 : 151 - 159
  • [48] DNMT3B Promoter Polymorphism and Risk of Gastric Cancer
    Hu, Jiabo
    Fan, Hong
    Liu, Dongsheng
    Zhang, Shuhong
    Zhang, Feng
    Xu, Huaxi
    DIGESTIVE DISEASES AND SCIENCES, 2010, 55 (04) : 1011 - 1016
  • [49] The DNMT3B Inhibitor Nanaomycin A as a Neuroblastoma Therapeutic Agent
    Izumi, Kazuya
    Aoki, Hiromasa
    Kakita, Hiroki
    Takeshita, Satoru
    Ueda, Hiroko
    Inoue, Yasumichi
    Hayashi, Hidetoshi
    Yamada, Yasumasa
    Aoyama, Mineyoshi
    CURRENT CANCER DRUG TARGETS, 2023, 23 (11) : 837 - 842
  • [50] DNMT3B Promoter Polymorphism and Risk of Gastric Cancer
    Jiabo Hu
    Hong Fan
    Dongsheng Liu
    Shuhong Zhang
    Feng Zhang
    Huaxi Xu
    Digestive Diseases and Sciences, 2010, 55 : 1011 - 1016