Lsh regulates LTR retrotransposon repression independently of Dnmt3b function

被引:39
|
作者
Dunican, Donncha S. [1 ]
Cruickshanks, Hazel A. [1 ]
Suzuki, Masako [2 ,3 ]
Semple, Colin A. [1 ]
Davey, Tracey [4 ]
Arceci, Robert J. [5 ]
Greally, John [2 ,3 ]
Adams, Ian R. [1 ]
Meehan, Richard R. [1 ]
机构
[1] Univ Edinburgh, MRC, Inst Genet & Mol Med, Human Genet Unit, Edinburgh EH4 2XU, Midlothian, Scotland
[2] Albert Einstein Coll Med, Dept Genet Computat Genet, Bronx, NY 10467 USA
[3] Albert Einstein Coll Med, Ctr Epigen, Bronx, NY 10467 USA
[4] Newcastle Univ, Newcastle Med Sch, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England
[5] Johns Hopkins, Baltimore, MD USA
基金
英国生物技术与生命科学研究理事会; 英国医学研究理事会;
关键词
DE-NOVO METHYLATION; PROMOTER DNA METHYLATION; EARLY MOUSE DEVELOPMENT; EMBRYONIC STEM-CELLS; CYTOSINE METHYLATION; MAMMALIAN DEVELOPMENT; SNF2; FAMILY; REPETITIVE SEQUENCES; GROWTH-RETARDATION; SATELLITE REPEATS;
D O I
10.1186/gb-2013-14-12-r146
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: DNA methylation contributes to genomic integrity by suppressing repeat-associated transposition. In addition to the canonical DNA methyltransferases, several auxiliary chromatin factors are required to maintain DNA methylation at intergenic and satellite repeats. The interaction between Lsh, a chromatin helicase, and the de novo methyltransferase Dnmt3b facilitates deposition of DNA methylation at stem cell genes, which are hypomethylated in Lsh(-/-) embryos. We wished to determine if a similar targeting mechanism operates to maintain DNA methylation at repetitive sequences. Results: We mapped genome-wide DNA methylation patterns in Lsh(-/-) and Dnmt3b(-/-) somatic cells. DNA methylation is predominantly lost from specific genomic repeats in Lsh(-/-) cells: LTR -retrotransposons, LINE-1 repeats and mouse satellites. RNA-seq experiments demonstrate that specific IAP LTRs and satellites, but not LINE-1 elements, are aberrantly transcribed in Lsh(-/-) cells. LTR hypomethylation in Dnmt3b(-/-) cells is moderate, whereas IAP, LINE-1 and satellite elements are hypomethylated but silent. Repressed LINE-1 elements in Lsh(-/-) cells gain H3K4me3, but H3K9me3 levels are unaltered, indicating that DNA hypomethylation alone is not permissive for their transcriptional activation. Mis-expressed IAPs and satellites lose H3K9me3 and gain H3K4me3 in Lsh(-/-) cells. Conclusions: Our study emphasizes that regulation of repetitive elements by Lsh and DNA methylation is selective and context dependent. Silencing of repeats in somatic cells appears not to be critically dependent on Dnmt3b function. We propose a model where Lsh is specifically required at a precise developmental window to target de novo methylation to repeat sequences, which is subsequently maintained by Dnmt1 to enforce selective repeat silencing.
引用
收藏
页数:23
相关论文
共 50 条
  • [11] DNMT3B Expression Delays Leukemogenesis
    Tschanter, Petra
    Schulze, Isabell
    Baeumer, Nicole
    Surmann, Beate
    Agelopoulos, Konstantin
    Krug, Utz
    Berdel, Wolfgang E.
    Linhart, Heinz
    Mueller-Tidow, Carsten
    BLOOD, 2011, 118 (21) : 1473 - 1473
  • [12] Significance of DNMT3b in Oral Cancer
    Chen, Wen-Cheng
    Chen, Miao-Fen
    Lin, Paul-Yang
    PLOS ONE, 2014, 9 (03):
  • [13] DNMT3A and DNMT3B in Breast Tumorigenesis and Potential Therapy
    Man, Xiaxia
    Li, Qi
    Wang, Baogang
    Zhang, He
    Zhang, Songling
    Li, Ziyi
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2022, 10
  • [14] DNMT3B (C46359T) Polymorphisms and Immunoexpression of DNMT3b and DNMT1 Proteins in Oral Lichen Planus
    Fonseca-Silva, Thiago
    Macedo de Oliveira, Marcos Vinicius
    de Carvalho Fraga, Carlos Alberto
    Farias, Lucyana Conceicao
    Pereira Gomes, Erika Patricia
    Barros, Lucas Oliveira
    Roy, Ashbeel
    Gomez, Ricardo Santiago
    Batista De Paula, Alfredo Mauricio
    Sena Guimaraes, Andre Luiz
    PATHOBIOLOGY, 2012, 79 (01) : 18 - 23
  • [15] Rbm10 regulates inflammation development via alternative splicing of Dnmt3b
    Atsumi, Toru
    Suzuki, Hironao
    Jiang, Jing-Jing
    Okuyama, Yuko
    Nakagawa, Ikuma
    Ota, Mitsutoshi
    Tanaka, Yuki
    Ohki, Takuto
    Katsunuma, Kokichi
    Nakajima, Koichi
    Hasegawa, Yoshinori
    Ohara, Osamu
    Ogura, Hideki
    Arima, Yasunobu
    Kamimura, Daisuke
    Murakami, Masaaki
    INTERNATIONAL IMMUNOLOGY, 2017, 29 (12) : 581 - 591
  • [16] Expression of the dnmt3 genes in zebrafish development: similarity to Dnmt3a and Dnmt3b
    Tamara H. L. Smith
    Terry Mark Collins
    Ross A. McGowan
    Development Genes and Evolution, 2011, 220 : 347 - 353
  • [17] Expression of the dnmt3 genes in zebrafish development: similarity to Dnmt3a and Dnmt3b
    Smith, Tamara H. L.
    Collins, Terry Mark
    McGowan, Ross A.
    DEVELOPMENT GENES AND EVOLUTION, 2011, 220 (11-12) : 347 - 353
  • [18] Domain Structure of the Dnmt1, Dnmt3a, and Dnmt3b DNA Methyltransferases
    Tajima, Shoji
    Suetake, Isao
    Takeshita, Kohei
    Nakagawa, Atsushi
    Kimura, Hironobu
    DNA METHYLTRANSFERASES - ROLE AND FUNCTION, 2016, 945 : 63 - 86
  • [19] Single-nucleotide polymorphisms in DNMT3B gene and DNMT3B mRNA expression in association with prostate cancer mortality
    Renata Zelic
    Valentina Fiano
    Ericka M. Ebot
    Sarah Coseo Markt
    Chiara Grasso
    Morena Trevisan
    Laura De Marco
    Luisa Delsedime
    Daniela Zugna
    Lorelei A. Mucci
    Lorenzo Richiardi
    Prostate Cancer and Prostatic Diseases, 2019, 22 : 284 - 291
  • [20] Single-nucleotide polymorphisms in DNMT3B gene and DNMT3B mRNA expression in association with prostate cancer mortality
    Zelic, Renata
    Fiano, Valentina
    Ebot, Ericka M.
    Markt, Sarah Coseo
    Grasso, Chiara
    Trevisan, Morena
    De Marco, Laura
    Delsedime, Luisa
    Zugna, Daniela
    Mucci, Lorelei A.
    Richiardi, Lorenzo
    PROSTATE CANCER AND PROSTATIC DISEASES, 2019, 22 (02) : 284 - 291