Class Aware Exemplar Discovery from Microarray Gene Expression Data

被引:1
|
作者
Sharma, Shivani [1 ]
Agrawal, Abhinna [1 ]
Patel, Dhaval [1 ]
机构
[1] Indian Inst Technol, Dept Comp Sci & Engn, Roorkee, Uttar Pradesh, India
来源
BIG DATA ANALYTICS, BDA 2015 | 2015年 / 9498卷
关键词
Gene; Exemplar and clustering; SELECTION;
D O I
10.1007/978-3-319-27057-9_17
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given a dataset, exemplars are subset of data points that can represent a set of data points without significance loss of information. Affinity propagation is an exemplar discovery technique that, unlike k-centres clustering, gives uniform preference to all data points. The data points iteratively exchange real-valued messages, until clusters with their representative exemplar become apparent. In this paper, we propose a Class Aware Exemplar Discovery (CAED) algorithm, which assigns preference value to data points based on their ability to differentiate samples of one class from others. To aid this, CAED performs class wise ranking of data points, assigning preference value to each data point based on its class wise rank. While exchanging messages, data points with better representative ability are more favored for being chosen as exemplar over other data points. The proposed method is evaluated over 18 gene expression datasets to check its efficacy for selection of relevant exemplars from large datasets. Experimental evaluation exhibits improvement in classification accuracy over affinity propagation and other state-of-art feature selection techniques. Class Aware Exemplar Discovery converges in lesser iterations as compared to affinity propagation thereby dropping the execution time significantly.
引用
收藏
页码:244 / 257
页数:14
相关论文
共 50 条
  • [41] Physically grounded approach for estimating gene expression from microarray data
    McMullen, Patrick D.
    Morimoto, Richard I.
    Amaral, Luis A. Nunes
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (31) : 13690 - 13695
  • [42] Optimization Based Tumor Classification from Microarray Gene Expression Data
    Dagliyan, Onur
    Uney-Yuksektepe, Fadime
    Kavakli, I. Halil
    Turkay, Metin
    PLOS ONE, 2011, 6 (02):
  • [43] Learning Bayesian classiriers from gene-expression microarray data
    Bosin, A
    Dessì, N
    Liberati, D
    Pes, B
    FUZZY LOGIC AND APPLICATIONS, 2006, 3849 : 297 - 304
  • [44] A cDNA microarray gene expression database for cancer drug discovery
    J.N. Weinstein
    U. Scherf
    D. Ross
    M. Waltham
    R. Reinhold
    Y. Zhou
    D.A. Scudiero
    L.H. Smith
    J.K. Lee
    D. Shalon
    D. Lashkari
    M. Eisen
    T.M. Myers
    E.A. Sausville
    D. Botstein
    P.O. Brown
    Nature Genetics, 1999, 23 (Suppl 3) : 81 - 81
  • [45] Analysis of variance for gene expression microarray data
    Kerr, MK
    Martin, M
    Churchill, GA
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2000, 7 (06) : 819 - 837
  • [46] Mixture modeling of microarray gene expression data
    Yang Yang
    Adam P Tashman
    Jung Yeon Lee
    Seungtai Yoon
    Wenyang Mao
    Kwangmi Ahn
    Wonkuk Kim
    Nancy R Mendell
    Derek Gordon
    Stephen J Finch
    BMC Proceedings, 1 (Suppl 1)
  • [47] Cluster ensemble for gene expression Microarray data
    de Souto, MCP
    Silva, SCM
    Bittencourtt, VG
    de Araujo, DSA
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 487 - 492
  • [48] Discovery of prostate cancer biomarkers by microarray gene expression profiling
    Sorensen, Karina Dalsgaard
    Orntoft, Torben Falck
    EXPERT REVIEW OF MOLECULAR DIAGNOSTICS, 2010, 10 (01) : 49 - 64
  • [49] Microarray Data Analysis of Gene Expression Evolution
    Lin, Honghuang
    GENE REGULATION AND SYSTEMS BIOLOGY, 2009, 3 : 211 - 214
  • [50] A gene expression bar code for microarray data
    Zilliox, Michael J.
    Irizarry, Rafael A.
    NATURE METHODS, 2007, 4 (11) : 911 - 913