Almost Ricci solitons and K-contact geometry

被引:0
|
作者
Sharma, Ramesh [1 ]
机构
[1] Univ New Haven, West Haven, CT 06516 USA
来源
MONATSHEFTE FUR MATHEMATIK | 2014年 / 175卷 / 04期
关键词
Almost Ricci soliton; Conformal vector field; Constant scalar curvature; K-Contact metric; Einstein Sasakian metric; COMPACT;
D O I
10.1007/s00605-014-0657-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a short Lie-derivative theoretic proof of the following recent result of Barros et al. "A compact non-trivial almost Ricci soliton with constant scalar curvature is gradient, and isometric to a Euclidean sphere". Next, we obtain the result: a complete almost Ricci soliton whose metric is -contact and flow vector field is contact, becomes a Ricci soliton with constant scalar curvature. In particular, for strict, becomes compact Sasakian Einstein.
引用
收藏
页码:621 / 628
页数:8
相关论文
共 50 条
  • [31] K-Ricci-Bourguignon Almost Solitons
    De, Uday Chand
    De, Krishnendu
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2024, 17 (01): : 63 - 71
  • [32] ALMOST KENMOTSU (k, μ)'-METRICS AS η-RICCI SOLITONS
    Wang, Wenjie
    HOUSTON JOURNAL OF MATHEMATICS, 2022, 48 (01): : 77 - 89
  • [33] ALMOST CONTACT 3-MANIFOLDS AND RICCI SOLITONS
    Cho, Jong Taek
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2013, 10 (01)
  • [34] Ricci almost solitons
    Pigola, Stefano
    Rigoli, Marco
    Rimoldi, Michele
    Setti, Alberto G.
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2011, 10 (04) : 757 - 799
  • [35] Ricci solitons and gradient Ricci solitons on 3-dimensional normal almost contact metric manifolds
    De, Uday Chand
    Turan, Mine
    Yildiz, Ahmet
    De, Avik
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2012, 80 (1-2): : 127 - 142
  • [36] *-RICCI SOLITONS AND GRADIENT ALMOST *-RICCI SOLITONS ON KENMOTSU MANIFOLDS
    Venkatesha
    Naik, Devaraja Mallesha
    Kumara, H. Aruna
    MATHEMATICA SLOVACA, 2019, 69 (06) : 1447 - 1458
  • [37] h-Almost Ricci-Yamabe Solitons in Paracontact Geometry
    De, Uday Chand
    Khan, Mohammad Nazrul Islam
    Sardar, Arpan
    MATHEMATICS, 2022, 10 (18)
  • [38] Torse-Forming η-Ricci Solitons in Almost Paracontact η-Einstein Geometry
    Blaga, Adara M.
    Crasmareanu, Mircea
    FILOMAT, 2017, 31 (02) : 499 - 504
  • [39] Geometry of Ricci Solitons
    Huai-Dong CAO (Dedicated to the memory of Shiing-Shen Cherri)
    Chinese Annals of Mathematics, 2006, (02) : 121 - 142
  • [40] Geometry of Ricci solitons
    Cao, Huai-Dong
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2006, 27 (02) : 121 - 142