Almost Ricci solitons and K-contact geometry

被引:0
|
作者
Sharma, Ramesh [1 ]
机构
[1] Univ New Haven, West Haven, CT 06516 USA
来源
MONATSHEFTE FUR MATHEMATIK | 2014年 / 175卷 / 04期
关键词
Almost Ricci soliton; Conformal vector field; Constant scalar curvature; K-Contact metric; Einstein Sasakian metric; COMPACT;
D O I
10.1007/s00605-014-0657-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a short Lie-derivative theoretic proof of the following recent result of Barros et al. "A compact non-trivial almost Ricci soliton with constant scalar curvature is gradient, and isometric to a Euclidean sphere". Next, we obtain the result: a complete almost Ricci soliton whose metric is -contact and flow vector field is contact, becomes a Ricci soliton with constant scalar curvature. In particular, for strict, becomes compact Sasakian Einstein.
引用
收藏
页码:621 / 628
页数:8
相关论文
共 50 条
  • [21] Parallelism in K-contact geometry
    Rukimbira P.
    Journal of Geometry, 2012, 103 (1) : 119 - 123
  • [22] K-contact and (k, μ)-contact metric as a generalized η-Ricci soliton
    Ghosh, Amalendu
    MATHEMATICA SLOVACA, 2023, 73 (01) : 185 - 194
  • [23] On K-contact metric manifolds satisfying an almost gradient Ricci-Bourguignon soliton
    Dey, Santu
    Suh, Young Jin
    REVIEWS IN MATHEMATICAL PHYSICS, 2024,
  • [24] Certain Contact Metrics as Ricci Almost Solitons
    Amalendu Ghosh
    Results in Mathematics, 2014, 65 : 81 - 94
  • [25] Certain Contact Metrics as Ricci Almost Solitons
    Ghosh, Amalendu
    RESULTS IN MATHEMATICS, 2014, 65 (1-2) : 81 - 94
  • [26] An isoparametric function on almost k-contact manifolds
    Blaga, Adara M.
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2009, 17 (01): : 15 - 22
  • [27] Geometry of almost contact metrics as a *-conformal Ricci-Yamabe solitons and related results
    Dey, Santu
    Roy, Soumendu
    Karaca, Fatma
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (09)
  • [28] The Geometry of δ-Ricci-Yamabe Almost Solitons on Para- contact Metric Manifolds
    Mondal, Somnath
    Dey, Santu
    Suh, Young jin
    Bhattacharyya, Arindam
    KYUNGPOOK MATHEMATICAL JOURNAL, 2023, 63 (04): : 623 - 638
  • [29] Geometry of almost Ricci solitons on paracontact metric manifolds
    Ali, Akram
    Mofarreh, Fatemah
    Patra, Dhriti Sundar
    QUAESTIONES MATHEMATICAE, 2022, 45 (08) : 1167 - 1180
  • [30] Almost Cosymplectic (k, μ)-metrics as η-Ricci Solitons
    Wang, Wenjie
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2022, 29 (01) : 58 - 72