Cyclicity in the Dirichlet space

被引:25
|
作者
El-Fallah, Omar
Kellay, Karim
Ransford, Thomas
机构
[1] Univ Mohammed 5, Dept Math, Rabat, Morocco
[2] Univ Laval, Dept Math & Stat, Ste Foy, PQ G1K 7P4, Canada
[3] Univ Aix Marseille 1, CMI, LATP, F-13453 Marseille 13, France
来源
ARKIV FOR MATEMATIK | 2006年 / 44卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1007/s11512-005-0008-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be the Dirichlet space, namely the space of holomorphic functions on the unit disk whose derivative is square-integrable. We give a new sufficient condition, not far from the known necessary condition, for a function f is an element of D to be cyclic, i.e. for {pf:p is a polynomial} to be dense in D. The proof is based on the notion of Bergman-Smirnov exceptional set introduced by Hedenmalm and Shields. Our methods yield the first known examples of such sets that are uncountable. One of the principal ingredients of the proof is a new converse to the strong-type inequality for capacity.
引用
收藏
页码:61 / 86
页数:26
相关论文
共 50 条
  • [41] BILINEAR FORMS ON THE DIRICHLET SPACE
    Arcozzi, Nicola
    Rochberg, Richard
    Sawyer, Eric
    Wick, Brett D.
    ANALYSIS & PDE, 2010, 3 (01): : 21 - 47
  • [42] Invariant Subspaces of the Dirichlet Space
    El-Fallah, Omar
    Kellay, Karim
    Ransford, Thomas
    HILBERT SPACES OF ANALYTIC FUNCTIONS, 2010, 51 : 133 - +
  • [43] Simultaneous approximation in the Dirichlet space
    Stray, A
    ADVANCES IN MULTIVARIATE APPROXIMATION, 1999, 107 : 307 - 319
  • [44] Kato Space for Dirichlet Forms
    Marco Biroli
    Umberto Mosco
    Potential Analysis, 1999, 10 : 327 - 345
  • [45] INTERPOLATION BY MULTIPLIERS OF THE DIRICHLET SPACE
    AXLER, S
    QUARTERLY JOURNAL OF MATHEMATICS, 1992, 43 (172): : 409 - 419
  • [46] INVERTIBLE ELEMENTS IN THE DIRICHLET SPACE
    BROWN, L
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1990, 33 (04): : 419 - 422
  • [47] Wandering Subspaces of the Bergman Space and the Dirichlet Space Over
    Chattopadhyay, Arup
    Das, B. Krishna
    Sarkar, Jaydeb
    Sarkar, S.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2014, 79 (04) : 567 - 577
  • [48] DIRICHLET SPACE ON AN INFINITE DIMENSIONAL HILBERT-SPACE
    PACLET, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 288 (21): : 981 - 983
  • [50] A Dirichlet Space on Ends of Tree and Dirichlet Forms with a Nodewise Orthogonal Property
    Hiroshi Kaneko
    Potential Analysis, 2014, 41 : 245 - 268