Cyclicity in the Dirichlet space

被引:25
|
作者
El-Fallah, Omar
Kellay, Karim
Ransford, Thomas
机构
[1] Univ Mohammed 5, Dept Math, Rabat, Morocco
[2] Univ Laval, Dept Math & Stat, Ste Foy, PQ G1K 7P4, Canada
[3] Univ Aix Marseille 1, CMI, LATP, F-13453 Marseille 13, France
来源
ARKIV FOR MATEMATIK | 2006年 / 44卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1007/s11512-005-0008-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be the Dirichlet space, namely the space of holomorphic functions on the unit disk whose derivative is square-integrable. We give a new sufficient condition, not far from the known necessary condition, for a function f is an element of D to be cyclic, i.e. for {pf:p is a polynomial} to be dense in D. The proof is based on the notion of Bergman-Smirnov exceptional set introduced by Hedenmalm and Shields. Our methods yield the first known examples of such sets that are uncountable. One of the principal ingredients of the proof is a new converse to the strong-type inequality for capacity.
引用
收藏
页码:61 / 86
页数:26
相关论文
共 50 条