Cyclicity in the Dirichlet space

被引:25
|
作者
El-Fallah, Omar
Kellay, Karim
Ransford, Thomas
机构
[1] Univ Mohammed 5, Dept Math, Rabat, Morocco
[2] Univ Laval, Dept Math & Stat, Ste Foy, PQ G1K 7P4, Canada
[3] Univ Aix Marseille 1, CMI, LATP, F-13453 Marseille 13, France
来源
ARKIV FOR MATEMATIK | 2006年 / 44卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1007/s11512-005-0008-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be the Dirichlet space, namely the space of holomorphic functions on the unit disk whose derivative is square-integrable. We give a new sufficient condition, not far from the known necessary condition, for a function f is an element of D to be cyclic, i.e. for {pf:p is a polynomial} to be dense in D. The proof is based on the notion of Bergman-Smirnov exceptional set introduced by Hedenmalm and Shields. Our methods yield the first known examples of such sets that are uncountable. One of the principal ingredients of the proof is a new converse to the strong-type inequality for capacity.
引用
收藏
页码:61 / 86
页数:26
相关论文
共 50 条
  • [1] On the Brown-Shields conjecture for cyclicity in the Dirichlet space
    El-Fallah, Omar
    Kellay, Karim
    Ransford, Thomas
    ADVANCES IN MATHEMATICS, 2009, 222 (06) : 2196 - 2214
  • [2] Cyclicity in Dirichlet Spaces
    Elmadani, Y.
    Labghail, I
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2019, 62 (02): : 247 - 257
  • [3] Cyclicity in Dirichlet type spaces
    Kellay, K.
    Le Manach, F.
    Zarrabi, M.
    COMPLEX ANALYSIS AND SPECTRAL THEORY, 2020, 743 : 181 - 193
  • [4] Cyclicity and invariant subspaces in Dirichlet spaces
    El-Fallah, O.
    Elmadani, Y.
    Kellay, K.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (09) : 3262 - 3279
  • [5] Cantor sets and cyclicity in weighted Dirichlet spaces
    El-Fallah, O.
    Kellay, K.
    Ransford, T.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 372 (02) : 565 - 573
  • [6] On cyclicity in the space Hp(β)
    Hedayatian, K
    TAIWANESE JOURNAL OF MATHEMATICS, 2004, 8 (03): : 429 - 442
  • [7] CYCLICITY IN DIRICHLET-TYPE SPACES AND EXTREMAL POLYNOMIALS
    Beneteau, Catherine
    Condori, Alberto A.
    Liaw, Constanze
    Seco, Daniel
    Sola, Alan A.
    JOURNAL D ANALYSE MATHEMATIQUE, 2015, 126 (01): : 259 - 286
  • [8] Cyclicity in Dirichlet-type spaces and extremal polynomials
    Catherine Bénéteau
    Alberto A. Condori
    Constanze Liaw
    Daniel Seco
    Alan A. Sola
    Journal d'Analyse Mathématique, 2015, 126 : 259 - 286
  • [9] CYCLICITY OF COMPOSITION OPERATORS ON THE FOCK SPACE
    Bayart, Frederic
    Tapia-garcia, Sebastian
    JOURNAL OF OPERATOR THEORY, 2024, 92 (02) : 549 - 577
  • [10] The Dirichlet space: a survey
    Arcozzi, Nicola
    Rochberg, Richard
    Sawyer, Eric T.
    Wick, Brett D.
    NEW YORK JOURNAL OF MATHEMATICS, 2011, 17A : 45 - 86