A Robust Numerical Method for a Singularly Perturbed Fredholm Integro-Differential Equation

被引:29
|
作者
Durmaz, Muhammet Enes [1 ]
Amiraliyev, Gabil M. [2 ]
机构
[1] Erzincan Binali Yildirim Univ, Grad Sch Nat & Appl Sci, Dept Math, TR-24100 Erzincan, Turkey
[2] Erzincan Binali Yildirim Univ, Dept Math, Fac Arts & Sci, TR-24100 Erzincan, Turkey
关键词
Fredholm integro-differential equation; singular perturbation; finite difference; Shishkin mesh; uniform convergence; 65L11; 65L12; 65L20; 65R20; 45J05; GALERKIN METHOD;
D O I
10.1007/s00009-020-01693-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we deal with a fitted second-order homogeneous (non-hybrid) type difference scheme for solving the singularly perturbed linear second-order Fredholm integro-differential equation. The numerical method represents the exponentially fitted scheme on the Shishkin mesh. Numerical example is presented to demonstrate efficiency of proposed method.
引用
收藏
页数:17
相关论文
共 50 条