A numerical approach for singularly perturbed reaction diffusion type Volterra-Fredholm integro-differential equations

被引:0
|
作者
Muhammet Enes Durmaz
机构
[1] Kırklareli University,Department of Information Technology
关键词
Finite difference scheme; Integro-differential equation; Shishkin mesh; Singular perturbation; Uniform convergence; 65L11; 65L12; 65L20; 65R20;
D O I
暂无
中图分类号
学科分类号
摘要
The goal of this study is to introduce a second-order computational method to solve Volterra-Fredholm integro-differential equations involving boundary layers. To solve numerically, we establish a finite difference scheme on the Shishkin mesh using a composite trapezoidal formulae for the integral part and interpolating quadrature rules and the linear exponential basis functions for the differential part. We establish that the numerical scheme and rate of convergence are both second-order and converge uniformly with reference to the small ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-parameter. The efficacy of the approach is supported by testing the numerical scheme’s performance.
引用
收藏
页码:3601 / 3624
页数:23
相关论文
共 50 条