An efficient numerical method for a singularly perturbed Volterra-Fredholm integro-differential equation

被引:5
|
作者
Durmaz, Muhammet Enes [1 ]
Yapman, Omer [2 ]
Kudu, Mustafa [2 ]
Amiraliyev, Gabil M. [2 ]
机构
[1] Kirklareli Univ, Dept Informat Technol, TR-39000 Kirklareli, Turkiye
[2] Erzincan Binali Yildirim Univ, Fac Arts & Sci, Dept Math, TR-24100 Erzincan, Turkiye
来源
关键词
finite difference methods; integro-differential equation; Shishkin mesh; singular perturbation; uniform convergence; DECOMPOSITION METHOD;
D O I
10.15672/hujms.1050505
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The scope of this study is to establish an effective approximation method for linear first order singularly perturbed Volterra-Fredholm integro-differential equations. The finite difference scheme is constructed on Shishkin mesh by using appropriate interpolating quadrature rules and exponential basis function. The recommended method is second order convergent in the discrete maximum norm. Numerical results illustrating the preciseness and computationally attractiveness of the proposed method are presented.
引用
收藏
页码:326 / 339
页数:14
相关论文
共 50 条