Numerical solution of a singularly perturbed Volterra integro-differential equation

被引:0
|
作者
Sebaheddin Şevgin
机构
[1] Yuzuncu Yil University,Department of Mathematics, Faculty of Sciences
关键词
singular perturbation; Volterra integro-differential equations; difference scheme; uniform convergence; graded mesh;
D O I
暂无
中图分类号
学科分类号
摘要
We study the convergence properties of a difference scheme for singularly perturbed Volterra integro-differential equations on a graded mesh. We show that the scheme is first-order convergent in the discrete maximum norm, independently of the perturbation parameter. Numerical experiments are presented, which are in agreement with the theoretical results.
引用
收藏
相关论文
共 50 条
  • [1] Numerical solution of a singularly perturbed Volterra integro-differential equation
    Sevgin, Sebaheddin
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [2] A uniformly convergent numerical method for a singularly perturbed Volterra integro-differential equation
    Iragi, Bakulikira C.
    Munyakazi, Justin B.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (04) : 759 - 771
  • [3] A Comparative Study on the Numerical Solution for Singularly Perturbed Volterra Integro-Differential Equations
    Panda A.
    Mohapatra J.
    Reddy N.R.
    [J]. Computational Mathematics and Modeling, 2021, 32 (3) : 364 - 375
  • [4] Analysis of a nonlinear singularly perturbed Volterra integro-differential equation
    Sumit, Sunil
    Kumar, Sunil
    Vigo-Aguiar, Jesus
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 404
  • [5] The Cauchy problem for a singularly perturbed Volterra integro-differential equation
    Nefedov N.N.
    Nikitin A.G.
    Urazgil'Dina T.A.
    [J]. Computational Mathematics and Mathematical Physics, 2006, 46 (5) : 768 - 775
  • [6] An efficient numerical method for a singularly perturbed Volterra-Fredholm integro-differential equation
    Durmaz, Muhammet Enes
    Yapman, Omer
    Kudu, Mustafa
    Amiraliyev, Gabil M.
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 52 (02): : 326 - 339
  • [7] A Novel Uniform Numerical Approach to Solve a Singularly Perturbed Volterra Integro-Differential Equation
    M. Cakir
    E. Cimen
    [J]. Computational Mathematics and Mathematical Physics, 2023, 63 : 1800 - 1816
  • [8] A Novel Uniform Numerical Approach to Solve a Singularly Perturbed Volterra Integro-Differential Equation
    Cakir, M.
    Cimen, E.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2023, 63 (10) : 1800 - 1816
  • [9] A posteriori error estimation for a singularly perturbed Volterra integro-differential equation
    Jian Huang
    Zhongdi Cen
    Aimin Xu
    Li-Bin Liu
    [J]. Numerical Algorithms, 2020, 83 : 549 - 563
  • [10] A posteriori error estimation for a singularly perturbed Volterra integro-differential equation
    Huang, Jian
    Cen, Zhongdi
    Xu, Aimin
    Liu, Li-Bin
    [J]. NUMERICAL ALGORITHMS, 2020, 83 (02) : 549 - 563