The central limit theorem for Euclidean minimal spanning trees II

被引:17
|
作者
Lee, S [1 ]
机构
[1] Yonsei Univ, Dept Math, Seoul 120749, South Korea
关键词
minimal spanning tree; central limit theorem; continuum percolation;
D O I
10.1017/S0001867800009551
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let (X-i : i greater than or equal to 1) be i.i.d. points in R-d, d greater than or equal to 2, and let T-n be a minimal spanning tree on {X-1,...,X-n}. Let L({X-1,...,X-n}) be the length of T-n and for each strictly positive integer ct let N({X-1,..., X-n}; alpha) be the number of vertices of degree alpha in T-n. If the common distribution satisfies certain regularity conditions, then we prove central limit theorems for L({X-1,..., X-n}) and N({X-1,..., X-n}; alpha). We also study the rate of convergence for EL ({X-1,..., X-n}) AMS 1991 Subject Classification: Primary 60D05; 60F05 Secondary 60K35; 05C05; 90C27.
引用
收藏
页码:969 / 984
页数:16
相关论文
共 50 条
  • [21] MINIMAL RATIO SPANNING TREES
    CHANDRASEKARAN, R
    NETWORKS, 1977, 7 (04) : 335 - 342
  • [22] Percolation and Minimal Spanning Trees
    Carol Bezuidenhout
    Geoffrey Grimmett
    Armin Löffler
    Journal of Statistical Physics, 1998, 92 : 1 - 34
  • [23] CENTRAL LIMIT THEOREM FOR GROUP OF D-DIMENSIONAL EUCLIDEAN MOTIONS
    ROYNETTE, B
    ANNALES DE L INSTITUT HENRI POINCARE SECTION B-CALCUL DES PROBABILITES ET STATISTIQUE, 1974, 10 (04): : 391 - 398
  • [24] Percolation and minimal spanning trees
    Bezuidenhout, C
    Grimmett, G
    Loffler, A
    JOURNAL OF STATISTICAL PHYSICS, 1998, 92 (1-2) : 1 - 34
  • [25] On the Area Requirements of Euclidean Minimum Spanning Trees
    Angelini, Patrizio
    Bruckdorfer, Till
    Chiesa, Marco
    Frati, Fabrizio
    Kaufmann, Michael
    Squarcella, Claudio
    ALGORITHMS AND DATA STRUCTURES, 2011, 6844 : 25 - +
  • [26] Testing Euclidean Minimum Spanning Trees in the Plane
    Czumaj, Artur
    Sohler, Christian
    ACM TRANSACTIONS ON ALGORITHMS, 2008, 4 (03)
  • [27] Stochastic Minimum Spanning Trees in Euclidean Spaces
    Kamousi, Pegah
    Chan, Timothy M.
    Suri, Subhash
    COMPUTATIONAL GEOMETRY (SCG 11), 2011, : 65 - 74
  • [28] COMPUTING EUCLIDEAN MAXIMUM SPANNING-TREES
    MONMA, C
    PATERSON, M
    SURI, S
    YAO, F
    ALGORITHMICA, 1990, 5 (03) : 407 - 419
  • [29] On the area requirements of Euclidean minimum spanning trees
    Angelini, Patrizio
    Bruckdorfer, Till
    Chiesa, Marco
    Frati, Fabrizio
    Kaufmann, Michael
    Squarcella, Claudio
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2014, 47 (02): : 200 - 213
  • [30] ON THE NUMBER OF LEAVES OF A EUCLIDEAN MINIMAL SPANNING TREE
    STEELE, JM
    SHEPP, LA
    EDDY, WF
    JOURNAL OF APPLIED PROBABILITY, 1987, 24 (04) : 809 - 826