Testing Euclidean Minimum Spanning Trees in the Plane

被引:8
|
作者
Czumaj, Artur [1 ,2 ]
Sohler, Christian [3 ]
机构
[1] Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, W Midlands, England
[2] Univ Warwick, Ctr Discrete Math & Its Applicat, Coventry CV4 7AL, W Midlands, England
[3] Univ Bonn, Dept Comp Sci, D-53117 Bonn, Germany
基金
英国工程与自然科学研究理事会;
关键词
Euclidean minimum spanning tree; property testing; randomized algorithms;
D O I
10.1145/1367064.1367071
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a Euclidean graph G over a set P of n points in the plane, we are interested in verifying whether G is a Euclidean minimum spanning tree (EMST) of P or G differs from it in more than epsilon n edges. We assume that G is given in adjacency list representation and the point/vertex set P is given in an array. We present a property testing algorithm that accepts graph G if it is an EMST of P and that rejects with probability at least 2/3 if G differs from every EMST of P in more than epsilon n edges. Our algorithm runs in O(root n/epsilon . log(2)(n/epsilon)) time and has a query complexity of O(root n/epsilon . log(n/epsilon)).
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Lower bounds for testing Euclidean Minimum Spanning Trees
    Ben-Zwi, Oren
    Lachish, Oded
    Newman, Ilan
    INFORMATION PROCESSING LETTERS, 2007, 102 (06) : 219 - 225
  • [2] On the Area Requirements of Euclidean Minimum Spanning Trees
    Angelini, Patrizio
    Bruckdorfer, Till
    Chiesa, Marco
    Frati, Fabrizio
    Kaufmann, Michael
    Squarcella, Claudio
    ALGORITHMS AND DATA STRUCTURES, 2011, 6844 : 25 - +
  • [3] Stochastic Minimum Spanning Trees in Euclidean Spaces
    Kamousi, Pegah
    Chan, Timothy M.
    Suri, Subhash
    COMPUTATIONAL GEOMETRY (SCG 11), 2011, : 65 - 74
  • [4] On the area requirements of Euclidean minimum spanning trees
    Angelini, Patrizio
    Bruckdorfer, Till
    Chiesa, Marco
    Frati, Fabrizio
    Kaufmann, Michael
    Squarcella, Claudio
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2014, 47 (02): : 200 - 213
  • [5] Kinetic Euclidean Minimum Spanning Tree in the Plane
    Rahmati, Zahed
    Zarei, Alireza
    COMBINATORIAL ALGORITHMS, 2011, 7056 : 261 - 274
  • [6] Kinetic Euclidean minimum spanning tree in the plane
    Rahmati, Zahed
    Zarei, Alireza
    JOURNAL OF DISCRETE ALGORITHMS, 2012, 16 : 2 - 11
  • [7] On minimum spanning trees for random Euclidean bipartite graphs
    Correddu, Mario
    Trevisan, Dario
    COMBINATORICS PROBABILITY AND COMPUTING, 2024, 33 (03) : 319 - 350
  • [8] Euclidean minimum spanning trees with independent and dependent geometric uncertainties
    Gitik, Rivka
    Bartal, Or
    Joskowicz, Leo
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2021, 96
  • [9] EUCLIDEAN MINIMUM SPANNING-TREES AND BICHROMATIC CLOSEST PAIRS
    AGARWAL, PK
    EDELSBRUNNER, H
    SCHWARZKOPF, O
    WELZL, E
    DISCRETE & COMPUTATIONAL GEOMETRY, 1991, 6 (05) : 407 - 422
  • [10] Dynamic Euclidean Minimum Spanning Trees and Extrema of Binary Functions
    Discrete and Computational Geometry, 13 (01):