Novel blood pressure and pulse pressure estimation based on pulse transit time and stroke volume approximation

被引:19
|
作者
Lee, Joonnyong [1 ]
Sohn, JangJay [1 ]
Park, Jonghyun [1 ]
Yang, SeungMan [1 ]
Lee, Saram [2 ]
Kim, Hee Chan [3 ,4 ]
机构
[1] Seoul Natl Univ, Grad Sch, Interdisciplinary Program Bioengn, Suite 321,Bldg 8,101 Daehak Ro, Seoul 03080, South Korea
[2] Seoul Natl Univ Hosp, Biomed Res Inst, Suite 1203-1,71 Daehak Ro, Seoul 03082, South Korea
[3] Seoul Natl Univ, Dept Biomed Engn, Coll Med, Suite 11315,101 Daehak Ro, Seoul 03080, South Korea
[4] Seoul Natl Univ, Inst Med & Biol Engn, Med Res Ctr, Suite 11315,101 Daehak Ro, Seoul 03080, South Korea
来源
基金
新加坡国家研究基金会;
关键词
Blood pressure; Pulse pressure; Stroke volume; Pre-ejection period; Pulse transit time; Ubiquitous healthcare; TOTAL ARTERIAL COMPLIANCE; CORONARY-HEART-DISEASE; CARDIOVASCULAR RISK; ARRIVAL-TIME; HYPERTENSION; BALLISTOCARDIOGRAM; VARIABILITY; RATIO; ABNORMALITIES; POPULATION;
D O I
10.1186/s12938-018-0510-8
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Background: Non-invasive continuous blood pressure monitors are of great interest to the medical community due to their value in hypertension management. Recently, studies have shown the potential of pulse pressure as a therapeutic target for hypertension, but not enough attention has been given to non-invasive continuous monitoring of pulse pressure. Although accurate pulse pressure estimation can be of direct value to hypertension management and indirectly to the estimation of systolic blood pressure, as it is the sum of pulse pressure and diastolic blood pressure, only a few inadequate methods of pulse pressure estimation have been proposed. Methods: We present a novel, non-invasive blood pressure and pulse pressure estimation method based on pulse transit time and pre-ejection period. Pre-ejection period and pulse transit time were measured non-invasively using electrocardiogram, seismocardiogram, and photoplethysmogram measured from the torso. The proposed method used the 2-element Windkessel model to model pulse pressure with the ratio of stroke volume, approximated by pre-ejection period, and arterial compliance, estimated by pulse transit time. Diastolic blood pressure was estimated using pulse transit time, and systolic blood pressure was estimated as the sum of the two estimates. The estimation method was verified in 11 subjects in two separate conditions with induced cardiovascular response and the results were compared against a reference measurement and values obtained from a previously proposed method. Results: The proposed method yielded high agreement with the reference (pulse pressure correlation with reference R >= 0.927, diastolic blood pressure correlation with reference R >= 0.854, systolic blood pressure correlation with reference R >= 0.914) and high estimation accuracy in pulse pressure (mean root-mean-squared error <= 3.46 mmHg) and blood pressure (mean root-mean-squared error <= 6.31 mmHg for diastolic blood pressure and <= 8.41 mmHg for systolic blood pressure) over a wide range of hemodynamic changes. Conclusion: The proposed pulse pressure estimation method provides accurate estimates in situations with and without significant changes in stroke volume. The proposed method improves upon the currently available systolic blood pressure estimation methods by providing accurate pulse pressure estimates.
引用
下载
收藏
页数:20
相关论文
共 50 条
  • [31] Validation of ambulatory blood pressure monitoring and pulse transit time
    Liendo Martinez, K. H.
    Lopez-Padilla, D.
    De Miguel Diez, J.
    Villar Alvarez, F.
    Gomez Garcia, T.
    EUROPEAN RESPIRATORY JOURNAL, 2022, 60
  • [32] Evaluation of the Correlation Between Blood Pressure and Pulse Transit Time
    He, Xiaochuan
    Goubran, Rafik A.
    Liu, Xiaoping P.
    2013 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS PROCEEDINGS (MEMEA), 2013, : 17 - 20
  • [33] VALIDATION OF THE FREESCAN PULSE TRANSIT TIME-BASED BLOOD PRESSURE MONITOR
    Wu, Chih-Cheng
    Chao, Paul C. -P.
    JOURNAL OF HYPERTENSION, 2016, 34 : E142 - E142
  • [34] Continuous Noninvasive blood pressure measurement by pulse transit time
    Fung, P
    Dumont, G
    Ries, C
    Mott, C
    Ansermino, M
    PROCEEDINGS OF THE 26TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2004, 26 : 738 - 741
  • [35] PULSE TRANSIT-TIME - RELATIONSHIP TO BLOOD-PRESSURE
    OBRIST, PA
    LIGHT, KC
    MCCUBBIN, JA
    HUTCHESON, JS
    HOFFER, JL
    BEHAVIOR RESEARCH METHODS & INSTRUMENTATION, 1978, 10 (05): : 623 - 626
  • [36] Correlation Study Between Blood Pressure And Pulse Transit Time
    Pereira, T.
    Sanches, R.
    Reis, P.
    Pego, J.
    Simoes, R.
    2015 IEEE 4TH PORTUGUESE MEETING ON BIOENGINEERING (ENBENG), 2015,
  • [37] Continuous Systolic Blood Pressure Measurement Based on Improved Pulse Transit Time
    Xie, Meng
    Yang, Bo
    Chen, Cailian
    Guan, Xinping
    Hong, Peijun
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 5173 - 5178
  • [38] Blood Pressure - Pulse Transit Time Relationships: Comparative Studies
    Polinski, Artur
    Bujnowski, Adam
    Kocejko, Tomasz
    Wtorek, Jerzy
    2020 13TH INTERNATIONAL CONFERENCE ON HUMAN SYSTEM INTERACTION (HSI), 2020, : 289 - 294
  • [39] Non-contact Blood Pressure Measurement Based on Pulse Transit Time
    Chen Pengyong
    Zhou Zuofeng
    Zhao Ting
    Cao Jianzhong
    Yang Hongtao
    TENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2018), 2018, 10806
  • [40] Image Based Contactless Blood Pressure Assessment using Pulse Transit Time
    Huang, Po-Wei
    Lin, Chun-Hao
    Chung, Meng-Liang
    Lin, Tzu-Min
    Wu, Bing-Fei
    2017 INTERNATIONAL AUTOMATIC CONTROL CONFERENCE (CACS), 2017,