Multiprobe NSOM fluorescence

被引:2
|
作者
Berezin, Shirly [2 ,3 ]
Kalanoor, Basanth S. [2 ,4 ]
Taha, Hesham [5 ]
Garini, Yuval [2 ,3 ]
Tischler, Yaakov R. [1 ]
机构
[1] Bar Ilan Univ, Bar Ilan Inst Nanotechnol & Adv Mat, Dept Chem, IL-52900 Ramat Gan, Israel
[2] Bar Ilan Univ, Bar Ilan Inst Nanotechnol & Adv Mat, IL-52900 Ramat Gan, Israel
[3] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
[4] Bar Ilan Univ, Dept Chem, IL-52900 Ramat Gan, Israel
[5] Nanon Imaging Ltd, IL-97775 Jerusalem, Israel
基金
以色列科学基金会;
关键词
multiprobe; NSOM; SPM; lumogen; FRET; tuning fork probe; SCANNING TUNNELING MICROSCOPE; CONDUCTIVITY MEASUREMENTS;
D O I
10.1515/nanoph-2014-0008
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this paper, we demonstrate simultaneous AFM/NSOM using a dual-tip normal tuning-fork based scanning probe microscope. By scanning two SPM probes simultaneously, one dedicated for AFM with a standard tip diameter of 20 nm, and the second having a 150 nm aperture NSOM fiber with 200 nm thick gold coating, we combine the benefits of similar to 20 nm spatial resolution from the AFM tip with the spectral information of a near-field optical probe. The combination of simultaneous dual-tip scanning enables us to decouple the requirements for high resolution topography and probe functionality. Our method represents a marked shift from previous applications of multi-probe SPM where essentially a pump-probe methodology is implemented in which one tip scans the area around the second. As a model system, we apply dual-tip AFM/NSOM scanning to a sample of spin-cast nano-clustered Lumogen dyes, which show remarkable brightness and photochemical stability. We observe morphology features with a resolution of 20 nm, and a nearfield optical resolution of 150 nm, validating our approach.
引用
收藏
页码:117 / 124
页数:8
相关论文
共 50 条
  • [31] Particle enhanced plasmonic NSOM
    Wang, Yuan
    Reinhard, Bjoern M.
    Sun, Cheng
    Zhang, Xiang
    PLASMONICS: NANOIMAGING, NANOFABRICATION, AND THEIR APPLICATIONS III, 2007, 6642
  • [32] Tip-enhanced NSOM
    Kawata, S
    Hayaazawa, N
    Yano, T
    Watanabe, H
    Ichimura, T
    Hashimoto, M
    Inouye, Y
    NANOBIOPHOTONICS AND BIOMEDICAL APPLICATIONS, 2004, 5331 : 1 - 12
  • [33] Development of an integrated NSOM probe
    Ruiter, AGT
    Moers, MHP
    Jalocha, A
    vanHulst, NF
    ULTRAMICROSCOPY, 1995, 61 (1-4) : 139 - 143
  • [34] MULTIPROBE COLLIMATOR FOR SCINTILLATION CAMERA
    DELAND, FH
    JOURNAL OF NUCLEAR MEDICINE, 1973, 14 (06) : 389 - 390
  • [35] SCANNING TOWED MULTIPROBE CHAIN
    PAKA, VT
    BAMBIZOV, GA
    GOLENKO, NN
    ZARUBIN, EP
    MASLOV, VA
    PODUFALOV, AP
    OKEANOLOGIYA, 1994, 34 (01): : 133 - 138
  • [36] Thermopower of a multiprobe ballistic conductor
    Pogosov, AG
    Budantsev, MV
    Uzur, D
    Nogaret, A
    Plotnikov, AE
    Bakarov, AK
    Toropov, AI
    PHYSICAL REVIEW B, 2002, 66 (20): : 1 - 4
  • [37] Confirmation of diploid sperm in human semen using multiprobe fluorescence in situ hybridization and phase-contrast microscopy
    Rubes, J
    Cassel, M
    Lowe, X
    Moore, D
    Wyrobek, A
    CYTOGENETICS AND CELL GENETICS, 1996, 74 (03): : 240 - 240
  • [38] Influence of tip fields on NSOM imaging
    Bryant, Garnett W.
    Liu, Ansheng
    IQEC, International Quantum Electronics Conference Proceedings, 1999, : 136 - 137
  • [39] Lithography in UV photoresist using NSOM
    Lin, Y
    Hong, MH
    Wang, WJ
    Law, YZ
    Chong, TC
    FIFTH INTERNATIONAL SYMPOSIUM ON LASER PRECISION MICROFABRICATION, 2004, 5662 : 77 - 82
  • [40] Wideband multiprobe microwave multimeter
    Volkov, VM
    Zaichenko, OB
    IVTH INTERNATIONAL CONFERENCE ON ANTENNA THEORY AND TECHNIQUES, VOLS 1 AND 2, PROCEEDINGS, 2003, : 754 - 756