Multiprobe NSOM fluorescence

被引:2
|
作者
Berezin, Shirly [2 ,3 ]
Kalanoor, Basanth S. [2 ,4 ]
Taha, Hesham [5 ]
Garini, Yuval [2 ,3 ]
Tischler, Yaakov R. [1 ]
机构
[1] Bar Ilan Univ, Bar Ilan Inst Nanotechnol & Adv Mat, Dept Chem, IL-52900 Ramat Gan, Israel
[2] Bar Ilan Univ, Bar Ilan Inst Nanotechnol & Adv Mat, IL-52900 Ramat Gan, Israel
[3] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
[4] Bar Ilan Univ, Dept Chem, IL-52900 Ramat Gan, Israel
[5] Nanon Imaging Ltd, IL-97775 Jerusalem, Israel
基金
以色列科学基金会;
关键词
multiprobe; NSOM; SPM; lumogen; FRET; tuning fork probe; SCANNING TUNNELING MICROSCOPE; CONDUCTIVITY MEASUREMENTS;
D O I
10.1515/nanoph-2014-0008
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this paper, we demonstrate simultaneous AFM/NSOM using a dual-tip normal tuning-fork based scanning probe microscope. By scanning two SPM probes simultaneously, one dedicated for AFM with a standard tip diameter of 20 nm, and the second having a 150 nm aperture NSOM fiber with 200 nm thick gold coating, we combine the benefits of similar to 20 nm spatial resolution from the AFM tip with the spectral information of a near-field optical probe. The combination of simultaneous dual-tip scanning enables us to decouple the requirements for high resolution topography and probe functionality. Our method represents a marked shift from previous applications of multi-probe SPM where essentially a pump-probe methodology is implemented in which one tip scans the area around the second. As a model system, we apply dual-tip AFM/NSOM scanning to a sample of spin-cast nano-clustered Lumogen dyes, which show remarkable brightness and photochemical stability. We observe morphology features with a resolution of 20 nm, and a nearfield optical resolution of 150 nm, validating our approach.
引用
收藏
页码:117 / 124
页数:8
相关论文
共 50 条
  • [21] A Preliminary Investigation on the Chromosome Aberrations in Acute Lymphoblastic Leukaemia Using Multiprobe Fluorescence In Situ Hybridization Panel
    Gokkaya, Bengisu
    Atasoy, Sezen
    Cirakoglu, Ayse
    Tarkan Arguden, Yelda
    Kuru, R. Dilhan
    Yilmaz, Sukriye
    Ongoren, Seniz
    Deviren, Ayhan
    BEZMIALEM SCIENCE, 2022, 10 (03): : 370 - 375
  • [22] OPTIMIZATION OF MULTIPROBE CRYOSURGERY
    KEANINI, RG
    RUBINSKY, B
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1992, 114 (04): : 796 - 801
  • [23] Ultrabroadband multiprobe reflectometer
    Staszek, Kamil
    Gruszczynski, Slawomir
    Wincza, Krzysztof
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2015, 57 (08) : 1968 - 1971
  • [24] MULTIPROBE DYNAMIC FUNCTION
    NEWLIN, TA
    JOURNAL OF NUCLEAR MEDICINE, 1967, 8 (05) : 363 - &
  • [25] Implementation of NSOM to Biological Samples
    Prauzner-Bechcicki, S.
    Wiltowska-Zuber, J.
    Budkowski, A.
    Lekka, M.
    Rysz, J.
    ACTA PHYSICA POLONICA A, 2012, 121 (02) : 533 - 538
  • [26] MAGNETOCONDUCTANCE IN MULTIPROBE SYSTEMS
    PRETRE, AB
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1991, 3 (41) : 8037 - 8051
  • [27] BILLIARDS IN A MULTIPROBE CONDUCTOR
    SCHUURMANS, MFH
    PHYSICA SCRIPTA, 1991, T35 : 221 - 225
  • [28] Grazing-emission X-ray fluorescence as a multiprobe tool for thin-film metrology
    Nikolaev, K. V.
    Safonov, A. I.
    Kondratev, O. A.
    Prutskov, G. V.
    Likhachev, I. A.
    Subbotin, I. A.
    Borisov, M. M.
    Tikhomirov, S. A.
    Pashaev, E. M.
    Yakunin, S. N.
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2023, 56 : 1435 - 1445
  • [29] Reactivity of surfaces and imaging with functional NSOM
    Knutson, TL
    Guillaume, F
    Lee, WJ
    Alhoshan, M
    Smyrl, WH
    ELECTROCHIMICA ACTA, 2003, 48 (20-22) : 3229 - 3237
  • [30] Thermal/optical effects in NSOM probes
    Yakobson, BI
    LaRosa, A
    Hallen, HD
    Paesler, MA
    ULTRAMICROSCOPY, 1995, 61 (1-4) : 179 - 185