Electrical conductivities of nanosheets studied by conductive atomic force microscopy

被引:11
|
作者
Yilmaz, Neval [1 ]
Ida, Shintaro [1 ]
Matsumoto, Yasumichi [1 ]
机构
[1] Kumamoto Univ, Grad Sch Sci & Technol, Dept Nano Sci & Technol, Kumamoto 8608555, Japan
基金
日本学术振兴会;
关键词
Nanostructures; Oxides; Atomic force microscopy (AFM); Electrical conductivity; EXFOLIATED MNO2 NANOSHEETS; LANGMUIR-BLODGETT-FILMS; LAYERED TITANATE; GRAPHITE OXIDE; SEMICONDUCTOR NANOSHEETS; PEROVSKITE NANOSHEETS; OPTICAL-PROPERTIES; CARBON NANOTUBES; RESTACKING ROUTE; MANGANESE OXIDE;
D O I
10.1016/j.matchemphys.2009.02.043
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The electrical conductivities of single nanosheets of titanium oxide (TiO(2)), manganese oxide (MnO(2)), double-layered titanium perovskite oxide (GdEuTiO), niobium oxide (NbO), and graphite oxide (GO) adsorbed on HOPG were studied by conductive atomic force microscopy (C-AFM) with a Pt-Ir tip. The conduction mechanism for different types of nanosheets could be clarified by using electrodes (HOPG and Pt-Ir tip) having different work functions. While the TiO(2), GdEuTiO, and NbO nanosheets showed asymmetric (rectifying) current/voltage (I/V)-profiles, those for the MnO(2) and GO nanosheets; were symmetric (nonrectifying). The differences in the I/V-profile indicated that the dominant electron transfer mechanism in case of TiO(2), GdEuTiO, and NbO nanosheets was tunneling under reverse bias like an n-type semiconductor and that for MnO(2) and GO nanosheets, having a defected structure, was hopping. Among all these nanosheets, MnO(2) exhibited the highest conductivity. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:62 / 66
页数:5
相关论文
共 50 条
  • [21] Development of highly conductive nanodomains in poly(3-hexylthiophene) films studied by conductive atomic force microscopy
    Osaka, Mild
    Benten, Hiroaki
    Lee, Li-Ting
    Ohkita, Hideo
    Ito, Shinzaburo
    [J]. POLYMER, 2013, 54 (14) : 3443 - 3447
  • [22] Bias-dependent conductive characteristics of individual GeSi quantum dots studied by conductive atomic force microscopy
    Wu, R.
    Zhang, S. L.
    Lin, J. H.
    Jiang, Z. M.
    Yang, X. J.
    [J]. NANOTECHNOLOGY, 2011, 22 (09)
  • [23] Conductive atomic force microscopy on carbon nanowalls
    Vetushka, A.
    Itoh, T.
    Nakanishi, Y.
    Fejfar, A.
    Nonomura, S.
    Ledinsky, M.
    Kocka, J.
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 2012, 358 (17) : 2545 - 2547
  • [24] Characterization of conductive probes for Atomic Force Microscopy
    Trenkler, T
    Hantschel, T
    Vandervorst, W
    Hellemans, L
    Kulisch, W
    Oesterschulze, E
    Niedermann, P
    Sulzbach, T
    [J]. DESIGN, TEST, AND MICROFABRICATION OF MEMS AND MOEMS, PTS 1 AND 2, 1999, 3680 : 1168 - 1179
  • [25] Moire fringes in conductive atomic force microscopy
    Richarz, L.
    He, J.
    Ludacka, U.
    Bourret, E.
    Yan, Z.
    van Helvoort, A. T. J.
    Meier, D.
    [J]. APPLIED PHYSICS LETTERS, 2023, 122 (16)
  • [26] Electrical properties of CdTe/CdS solar cells investigated with conductive atomic force microscopy
    Moutinho, H. R.
    Dhere, R. G.
    Jiang, C. -S.
    Al-Jassim, M. M.
    Kazmerski, L. L.
    [J]. THIN SOLID FILMS, 2006, 514 (1-2) : 150 - 155
  • [27] Measurements of the Electrical Conductivity of Monolayer Graphene Flakes Using Conductive Atomic Force Microscopy
    Lim, Soomook
    Park, Hyunsoo
    Yamamoto, Go
    Lee, Changgu
    Suk, Ji Won
    [J]. NANOMATERIALS, 2021, 11 (10)
  • [28] Modification of electrical properties of tungsten oxide nanorods using conductive atomic force microscopy
    Guaino, Ph.
    Gillet, M.
    Delamare, R.
    Gillet, E.
    [J]. SURFACE SCIENCE, 2007, 601 (13) : 2684 - 2687
  • [29] Electrical characterization of ZnO multilayer varistors on the nanometre scale with conductive atomic force microscopy
    Schloffer, Martin
    Teichert, Christian
    Supancic, Peter
    Andreev, Andrei
    Hou, Yue
    Wang, Zhonghua
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2010, 30 (07) : 1761 - 1764
  • [30] Structural and electrical evolution of gate dielectric breakdown observed by conductive atomic force microscopy
    Zhang, L
    Mitani, Y
    [J]. APPLIED PHYSICS LETTERS, 2006, 88 (03) : 1 - 3