Infrared metrology for spintronic materials and devices

被引:6
|
作者
Vopsaroiu, M. [1 ]
Stanton, T. [2 ]
Thomas, O. [1 ]
Cain, M. [1 ]
Thompson, S. M. [2 ]
机构
[1] Natl Phys Lab, Teddington TW11 0LW, Middx, England
[2] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England
关键词
magneto-refractive effect; non-contact GMR; IR reflectivity; GIANT MAGNETORESISTANCE; CONTACTLESS MEASUREMENT; GRANULAR FILMS;
D O I
10.1088/0957-0233/20/4/045109
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magneto-resistance is the most important characteristic of spintronic materials. This is usually measured using electrical contact probe testing. In this paper, we discuss a simple optical infrared (IR) experiment that allows the non-contact measurement of the magneto-resistance of spintronic materials and devices. The results are compared with characteristic electrical giant magneto-resistance (GMR) curves and show good agreement. The instrument is simpler and more compact than previous demonstrators, offering the possibility of routine measurement. The ability to measure a GMR profile using a non-contact, non-destructive IR technique has important implications, enabling in situ sample testing, non-contact profiling of the GMR at a wafer level and spatial resolution GMR measurements.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Spintronic Devices upon 2D Magnetic Materials and Heterojunctions
    Jia, Zhiyan
    Zhao, Mengfan
    Chen, Qian
    Tian, Yuxin
    Liu, Lixuan
    Zhang, Fang
    Zhang, Delin
    Ji, Yue
    Camargo, Bruno
    Ye, Kun
    Sun, Rong
    Wang, Zhongchang
    Jiang, Yong
    ACS NANO, 2025, 19 (10) : 9452 - 9483
  • [32] Spin gapped metals: A novel class of materials for multifunctional spintronic devices
    Sasioglu, E.
    Tas, M.
    Ghosh, S.
    Beida, W.
    Sanyal, B.
    Blugel, S.
    Mertig, I.
    Galanakis, I.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2025, 615
  • [33] QuAHMET: Quantum anomalous Hall effect materials and devices for metrology
    Marzano, Martina
    Callegaro, Luca
    Medved, Juan
    Gould, Charles
    Hoffmann, Johannes
    Huang, Nathaniel
    Kaneko, Nobu-Hisa
    Kucera, Jan
    Molenkamp, Laurens W.
    Onbasli, Mehmet Cengiz
    Ozbay, Aisha Gokce
    Scherer, Hansjoerg
    Kumar, Susmit
    2024 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS, CPEM 2024, 2024,
  • [34] Magnetic two-dimensional van der Waals materials for spintronic devices
    张雨
    许洪军
    丰家峰
    吴昊
    于国强
    韩秀峰
    Chinese Physics B, 2021, 30 (11) : 658 - 667
  • [35] Magnetic two-dimensional van der Waals materials for spintronic devices*
    Zhang, Yu
    Xu, Hongjun
    Feng, Jiafeng
    Wu, Hao
    Yu, Guoqiang
    Han, Xiufeng
    CHINESE PHYSICS B, 2021, 30 (11)
  • [36] Spintronic materials and devices towards an artificial neural network: accomplishments and the last mile
    Ismael Salinas, Rudis
    Chen, Po-Chuan
    Yang, Chao-Yao
    Lai, Chih-Huang
    MATERIALS RESEARCH LETTERS, 2023, 11 (05): : 305 - 326
  • [37] Infrared electrochromic materials, devices and applications
    Niu, Junlong
    Wang, Yi
    Zou, Xinlei
    Tan, Yang
    Jia, Chunyang
    Weng, Xiaolong
    Deng, Longjiang
    APPLIED MATERIALS TODAY, 2021, 24
  • [38] Spintronic devices: a promising alternative to CMOS devices
    Prashanth Barla
    Vinod Kumar Joshi
    Somashekara Bhat
    Journal of Computational Electronics, 2021, 20 : 805 - 837
  • [39] Spintronic devices for biomedical applications
    Shahriar Mostufa
    Shuang Liang
    Vinit Kumar Chugh
    Jian-Ping Wang
    Kai Wu
    npj Spintronics, 2 (1):
  • [40] Flexible spintronic devices on Kapton
    Bedoya-Pinto, Amilcar
    Donolato, Marco
    Gobbi, Marco
    Hueso, Luis E.
    Vavassori, Paolo
    APPLIED PHYSICS LETTERS, 2014, 104 (06)